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Fig. 1. Representations of higher-order interactions. A set of interactions of heterogeneous order (A) can be represented using only pairwise
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hypergraph by treating
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based on some relation.
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With an encapsulation DAG (or other line graph), we can simulate
dynamics happening on the hyperedges
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Dynamics on hypergraphs

Node-based Threshold Encapsulation Dynamics
Dynamics
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in a hyperedge where more than a than a threshold of its encapsulated

threshold of nodes become active. hyperedges becomes active.
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_ _ Encapsulation Dynamics
Nodes and edges in binary state,

active or inactive

el )L e

Inactive Active

A hyperedge becomes active if more
than a threshold of its encapsulated
hyperedges becomes active.
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(Campfire) Dynamics on

Analogy to lighting a campfire: the
smallest fuel must be lit before the
logs can catch on fire!

Image: https://www.pelican.com/us/en/discover/pelican-flyer/post/how-to-start-a-campfire/

Correspond to a type of
coordinated behavior where
nodes not only share
goals/opinion/information, but
coordinate to pass to other groups
they are embedded within.
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A hyperedge becomes active if more
than a threshold of its encapsulated
hyperedges becomes active.



Random Nested Hypergraph Model

Idea: Start from a fully encapsulated hypergraph
(simplicial complex), then selectively rewire
hyperedges to destroy encapsulation
relationships

Parameters:
N: Number of nodes
s,,; Maximum size hyperedge
H_: Number of hyperedges of size s

€. 1 minus probability of rewiring
hyperedge of size s

Procedure:

1. Generate random hyperedges of size s _
and all of their subhyperedges (power
set)

2. For each hyperedge of size s <s_, rewire
with probability €_

Contagion dynamics on hypergraphs with nested hyperedges

Jihye Kim,l Deok-Sun Lee,z’ﬁ and Kwang-I1 Gohl’ﬂ
arXiv:2303.00224v1

Rewiring works by choosing a pivot
node to keep, then randomizing other
nodes by choosing nodes that are not
in supersets of the original hyperedge.



Random Nested Hypergraph Model
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Random Nested Hypergraph Model

Overlap Structures for Varying &

£,=1.0,e3=1.0 £,=1.0,63=0.5

£,=1.0,63=0.0

In strict encapsulation

dynamics, activation

can only spread up
the black edges!



Simulation Results

Average results over 50 strict encapsulation dynamics
simulations on 50 RNHM realizations
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Simulation Results

Uniform seeding:

e Even with high proportion of nodes
activated, only half of edes in the best
case

Smallest first seeding:

e When no hyperedges are rewired, full
hypergraph becomes activated (trivial
but important)

e Even though nodes are activated by
definition, all hyperedges do not
become active. Key distinguishing
feature from node-based threshold
dynamics.

These dynamics correspond not just to node
influence, but to coordinated behavior!
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Thank you!

Contact
larock@maths.ox.ac.uk
https://www.tlarock.qithub.io

Code: @tlarock on GitHub

https://www.qithub.com/tlarock/encapsulation-dynamics

Q|

4 HyperNetX

Also in the paper...

Measurements on empirical datasets

DAG degrees, paths through encapsulation DAGs
Comparison with randomization using a simple
procedure that destroys encapsulation
relationships

Comparison of strict vs. non-strict encapsulation dynamics
on empirical hypergraphs, accounting for (non-)influence
of individual nodes on pairwise interactions.
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https://www.github.com/tlarock/encapsulation-dynamics
mailto:larock@maths.ox.ac.uk
https://www.tlarock.github.io

Future Work

e Structure
o Temporal + dynamic interactions
o Integration with work on hypergraph motifs, random walks, etc.
o Further network analysis of encapsulation DAGs and other line graphs
e Dynamics
o More complex models, including stochastic models
o Combining node and hyperedge influence
o Different models of influence between hyperedges (simulations w/ different line graphs)
o  Analytic results - encapsulation dynamics are node-based dynamics on line graphs
e Applications
o Cooperation and competition
o Social influence
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DAG Out-degree
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Layer Randomization

_ Node Shuffling g e
Idea: Shuffle node labels within each size layer k=4 _ > \b d

a:g

. b:c

Randomizes: o f

. ) . e:b

e Encapsulation and overlap relationships Encapsulation f:d

e Labeled node-degree distributions within relationships g-e
and across size layers

Preserves:

k=3 Node Shuffling
e Hyperedge size distribution B arf

e Unlabeled node-degree distribution within
size layers c:b




Layer Randomization

Maximum Encapsulation
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DAG Degree

Observed Frequency

Random Frequency
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Empirical Simulation Results
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Encapsulation Dynamics
Hypergraph 1

In node-based e
threshold dynamics,
all hyperedges will
become active if
nodes a and b

d {%ﬁa\
(@ o)
O\

become activated. L ee
Full activation will be
impossible in a,b,c
encapsulation
dynamics.
a,d b,e

Hypergraph 2

a,b,c

a,b b,e

In node-based
threshold dynamics,
activating any of
a,b,e could activate
all hyperedges.

In encapsulation
dynamics, full
activation can only
happen if hyperedge
{a,b} is activated.

In non-strict
dynamics, activation
of b would activate
a,b
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