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This Talk

Motivation: Understanding mechanisms behind sequential data on networks

Today:
Motivate the study of path anomalies

Introduce de Bruijn graph representation of sequential data
Develop tractable null model to measure deviation of path data from expectation

Validate null model in synthetic data + compare with naive baseline method

Application of methodology to a real system
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Intuitive Example: Passenger Flight Data
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Intuitive Example: Passenger Flight Data
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Research Question
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Research Question
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In other words: Which paths are anomalous?



Problem: Path anomaly detection

For a given pathway dataset S, graph G, and integer £, identify paths of
length &k through G whose observed frequencies in S deviate significantly
from random expectation in a (k-1)-order model of paths through G.
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Problem: Path anomaly detection

For a given pathway dataset S, graph G, and integer £, identify paths of
length &k through G whose observed frequencies in S deviate significantly
from random expectation in a (k-1)-order model of paths through G.

When k=2, this corresponds to comparing a random walk with a single step
of memory to a memoryless (Markovian) random walk on G.

Northeastern University
(o) Network Science Institute

11



Toy Example

Three Goals:
1. Introduce de Bruijn graphs as representations of sequential data
2. Show how path anomalies emerge in a simple setting

3. Show how path anomalies can be detected through a random walk
simulation approach

(Spoiler: Simulation approach is infeasible for real world datasets!)
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Toy Example
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Toy Example
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Toy Example: Data
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Toy Example: Data
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Toy Example: Data to (first-order) graph

edge counts
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Toy Example: Data to (first-order) graph

edge counts
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Toy Example: Data to 2"d order de Bruijn graph

Path counts
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Toy Example: Data to 2"d order de Bruijn graph

Path counts
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Toy Example: Path Anomalies via Simulations

For a given pathway dataset S, graph G, and integer £, identify paths of
length &k through G whose observed frequencies in S deviate significantly
from random expectation in a (k-1)-order model of paths through G.
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Toy Example: Path Anomalies via Simulations

For a given pathway dataset S, graph G, and integer £, identify paths of
length &k through G whose observed frequencies in S deviate significantly
from random expectation in a (k-1)-order model of paths through G.

Compute expected frequency of each pathway

Simulate many random walk datasets and subtract from observed value

®
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Toy Example: Path Anomalies via Simulations

Path counts

100 Deviation from
Randomized Paths
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Challenges
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Path Anomaly Detection: Challenges

Detecting path anomalies via simulations = computationally intensive
Result is expected value, no concrete notion of significance

Alternative: detect path anomalies analytically by developing a tractable null model
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Null Model: Challenges

Traditional null models (e.g. configuration model) cannot be applied directly
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Null Model: Challenges

Traditional null models (e.g. configuration model) cannot be applied directly

Edges between higher-order nodes can not be randomized by stub-matching

(D—3—9 Ep—6—Cp
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Null Model: Challenges

Traditional null models (e.g. configuration model) cannot be applied directly
Edges between higher-order nodes can not be randomized by stub-matching

(D—3—9 Ep—6—Cp

Need to randomize edge weight distribution in de Bruijn graph models, since connectivity
structure is fixed by 1st-order topology
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HYPA: Efficient Detection of Path Anomalies
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Generalized Hypergeometric Ensemble

Generalized Hypergeometric Ensembles:
Statistical Hypothesis Testing in Complex Networks

Giona Casiraghi,l' Vahan Nanumyan,l*lﬂ Ingo Scholtes,l’z’lﬂ and Frank Schweitzerl’lﬂ

YETH Ziirich, Chair of System Design, Weinbergstrasse 56/58, 8092 Ziirich, Switzerland
2AIFB, Karlsruhe Institute of Technology, Karlsruhe, Germany
(Dated: 5th August 2016)

Statistical ensembles of networks, i.e., probability spaces of all networks that are consistent with
given aggregate statistics, have become instrumental in the analysis of complex networks. Their
numerical and analytical study provides the foundation for the inference of topological patterns,
the definition of network-analytic measures, as well as for model selection and statistical hypothesis
testing. Contributing to the foundation of these data analysis techniques, in this Letter we introduce
generalized hypergeometric ensembles, a broad class of analytically tractable statistical ensembles of
finite, directed and weighted networks. This framework can be interpreted as a generalization of
the classical configuration model, which is commonly used to randomly generate networks with a
given degree sequence or distribution. Our generalization rests on the introduction of dyadic link
propensities, which capture the degree-corrected tendencies of pairs of nodes to form edges between
each other. Studying empirical and synthetic data, we show that our approach provides broad
perspectives for model selection and statistical hypothesis testing in data on complex networks.

PACS numbers: 89.75.Hc, 02.50.Sk, 89.75.Kd

Generalised hypergeometric ensembles of random graphs:
the configuration model as an urn problem
Giona Casiraghi* Vahan Nanumyan?

Chair of Systems Design,
ETH Zurich, Weinbergstrasse 56/58, 8092 Zurich, Switzerland

*gcasiraghi@ethz.ch

tonanumyan@ethz.ch

Abstract

We introduce a broad class of random graph models: the generalised hypergeo-
metric ensemble (GHypEG). This class enables to solve some long standing prob-
lems in random graph theory. First, GHypEG provides an elegant and compact
formulation of the well-known configuration model in terms of an urn problem.
Second, GHypEG allows to incorporate arbitrary tendencies to connect different
vertex pairs. Third, we present the closed-form expressions of the associated prob-
ability distribution ensures the analytical tractability of our formulation. This is in
stark contrast with the previous state-of-the-art, which is to implement the config-

uration model by means of computationally expensive procedures.
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Generalized Hypergeometric Ensemble

Generalization of the configuration model to
weighted, directed networks.
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Generalized Hypergeometric Ensemble

Generalization of the configuration model to
weighted, directed networks.

Fixes the expected weight of every node,
rather than the exact degree sequence.
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Generalized Hypergeometric Ensemble

Generalization of the configuration model to
weighted, directed networks.

Fixes the expected weight of every node,
rather than the exact degree sequence.

Urn Problem Intuition:

©  Each pair of nodes that can possibly connect is
assigned a color
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Generalized Hypergeometric Ensemble
Urn

Generalization of the configuration model to
weighted, directed networks.

&
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Fixes the expected weight of every node,
rather than the exact degree sequence.

Urn Problem Intuition:

©  Each pair of nodes that can possibly connect is
assigned a color

o Add Kj;; balls, where K;; = k;-)mk?;n
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Generalized Hypergeometric Ensemble
Urn

Generalization of the configuration model to
weighted, directed networks.

&
205100 &)
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Fixes the expected weight of every node,
rather than the exact degree sequence.

Urn Problem Intuition:

©  Each pair of nodes that can possibly connect is
assigned a color

o Add Kj;; balls, where K;; = k;-)m/{?;n

O  Draw m edges to sample a network from the urn,
where m = X;; Wij
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m = 2;; Wi
Hypergeometric Ensemble Kij = kOUtkin

prioe =100 (7)) (o S

Probability of observing frequency f(v,w) given the entire weighted network structure.
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m = 2;; Wi
Hypergeometric Ensemble Kij = kOUtkin

privoe = s (7)) (o S

N

Number of ways to pick f(v,w) multiedges from K, , possible.
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m = 2;; Wi
Hypergeometric Ensemble Kij = koutkin

prioe = s (7)) (o S

=

Number of ways to pick everything else.
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Putting it all together: HYPA scores
HYPAY) (T, W) = Pr Xz < f(T,W))
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Putting it all together: HYPA scores
HYPAY) (T, W) = Pr(Xzw < f(T,W))

If “close” to 0, then the pathway is underrepresented.

If “close” to 1, then pathway 1s overrepresented.
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Putting it all together: HYPA scores
HYPAY) (T, W) = Pr Xz < f(T,W))

If “close” to 0, then the pathway is underrepresented.

If “close” to 1, then pathway 1s overrepresented.

Observed Data Simulation Result HYPA Scores

Deviation from
Randomized Paths
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Validation
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Noise via Path Randomization

paths
—e— AXC —e— B
—e— AXD —e—B

o

~l

ol
1

0.50 -

HYPA score

o o

o )

o (3
1 1

000 025 050 075  1.00
fraction of randomised paths

Northeastern University

Network Science Institute



Synthetic Anomalies: Setup
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Synthetic Anomalies: Setup

Start with an arbitrary first order topology, then construct the kth-
order de Bruijn graph
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Synthetic Anomalies: Setup

Randomly choose some edges to label over-represented
k=2
CA)>® <© Q® e
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Synthetic Anomalies: Setup

Assign heterogeneous weights based on label

o
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Synthetic Anomalies: Setup

Generate paths via random walks on this model, then evaluate
ability of HYPA to detect injected anomalies (binary classifier).

o
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Synthetic Anomalies: ROC Example
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Synthetic Anomalies: ROC Example

Injected Anomalies of Length 2
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Synthetic Anomalies: AUC Results
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Application to Flight Data
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Airlines

5% sample of all US domestic flights in 2018

Topology Sequences

Data Nodes Edges Total Unique [™%*

(1)

Flights 382 6933 185871 388539 10

\ . .
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Airlines

Hypotheses:

1. Return flights should be over-represented, since people most often travel
round trip.
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Airlines: Return trips are over-represented

o Return Non-return

0.05 0.915 0.340
0.01 0.851 0.130
0.001 0.760 0.023
0.0001 0.688 0.004
0.00001 0.628 0.001

Fraction of over-represented return/non-return flights for various discrimination thresholds.
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Airlines: Return trips are over-represented

o Return Non-return
0.05 0.915 0.340

Fraction of over-represented return/non-return flights for various discrimination thresholds.
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Airlines

Hypotheses:

1. Return flights should be over-represented, since people most often travel
round trip.

2. Over-represented non-return flights are due to regional/national hubs, since
people need to fly from small airports — regional hub — large airport.
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Airlines: Trip Balance
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Airlines

Hypotheses:

1. Return flights should be over-represented, since people most often travel

round trip.

2. Over-represented non-return flights are due to regional/national hubs, since
people need to fly from small airports — regional hub — large airport.

3. “Efficient” paths are more likely to be over-represented.
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Airlines: Efficiency
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Thanks!

Tim LaRock
larock.t@husky.neu.edu
tlarock.github.io
https://arxiv.org/abs/1905.10580
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Definition: kth-order de Bruijn Graph

For a given graph G = (V, E) and positive integer k we define a k-th order
De Bruijn graph of paths in G as a graph G* = (V*, E*), where (i) each node

U= vovy .. vk_1 € V¥ is a path of length k — 1 in G, and (ii) (¥, %) € E¥ iff
Vit1 = W forz—O,...,k—Q.
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Pseudocode

Algorithm 1 ComputeHYPA(S, k): Compute kth order HYPA scores
for sequence dataset S.

Input: S (sequences), k (desired order)
Output: HYPA %) score for all k-th order paths
1: G¥« DeBruijnGraph(S, k) # Construct kth order graph

2: 2 fitXi(GX, tolerance) # Optimization (Algorithm 2 in Appendix A.1)

3. for (T, W) € G¥ do
HYPAK)(T, W)e—Pr(xpw <(T, W) | m, =
# Compute CDF

5: return HYPA(K)
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Naive Baseline Comparison

Frequency-Based Anomaly Detection (FBAD)
Compute mean, pu, and standard deviation, o, of kth order edge weights
Given scaling factor a, label edges as

- Overrepresented if frequency is larger than p + ca
- Underrepresented if frequency is smaller than p - ca
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Synthetic Anomalies
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Real Data

Topology Sequences
Data Nodes Edges Total Unique [™**  (])
Tube 268 646 4295731 67015 35 6.75
Flights 382 6933 185871 388539 10 2.48
Journals 283 1743 480496 309565 35 14.8
Hospital 75 1138 28422 2561 5 1.19
Wiki 100 1598 29682 7431 21 1.64
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Exploring Motifs
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Case Study: London Tube

Data:

- Origin — destination statistics between London Tube stations
- (origin, destination, #observations)

- Shortest paths between stations
- Assume people follow shortest paths
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London Tube

Hypothesis:

- People typically use public transportation to travel large geographic distances
- Overrepresented pathways should cover larger distances

Test:

- Measure distance between every station
- For 2nd order transitions A-B-C, compute distance between nodes A and C

- Analyze distributions of distance in over vs. under represented transitions
- Expect to see distribution shifted towards higher values for over-represented transitions
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London Tube
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London Tube

HYPA () k=2 k=3 k=4 k=5 k=6
Under [km] 0.00 2.38 329 460  5.43
Over [km] 2.20 2.93 379 521  5.63
p-value <107" <1077 <107* 0.006 0.08

Median distance between source and destination nodes in under/over represented transitions.
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Constructing Ground Truth

Construct ground truth based on the method discussed earlier:

@)

Sl

Randomize path data using k-1st order random walks

Compute kth-order path statistics

Repeat m times, noting the frequency of each path

Estimate multinomial distribution and its CDF from these statistics

If CDF(path) > threshold, label over-represented
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Tube Data - Ground Truth
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Computational complexity

O(N +|V[*A7)
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Scalability
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Figure 8: Empirical scalability of HYPA. Left: Required time
to detect path anomalies of length k for the Tube data. Right:
Runtime in Flights data for detection order k = 1 and vary-
ing data size N randomly sampled from the data. All data
points correspond to the mean of ten repeated measure-
ments, with the standard deviations shown as bars.
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