
CS 3000: Algorithms & Data — Summer 1 ’20 — Tim LaRock

Homework 1
Due Due Monday May 11 at 11:59pm Boston time via Canvas

Name:
Collaborators:

• Make sure to put your name on the first page. If you are using the LATEX template we
provided, then you can make sure it appears by filling in the yourname command.

• This assignment is due Due Monday May 11 at 11:59pm Boston time via Canvas. Make
sure to submit something before the deadline.

• Solutions must be typeset in LATEX. If you need to draw any diagrams, you may draw them
by hand as long as they are embedded in the PDF. I recommend using the source file for
this assignment to get started.

• I encourage you to work with your classmates on the homework problems. If you do
collaborate, you must write all solutions by yourself, in your own words. Do not submit anything
you cannot explain. Please list all your collaborators in your solution for each problem by
filling in the yourcollaborators command.

• Finding solutions to homework problems on the web, or by asking students not enrolled
in the class, is strictly forbidden.

1

https://tlarock.github.io/teaching/cs3000/syllabus.html


Problem 1. Inductive Proofs

(a) Prove the following statement by induction: For every n ∈N,
∑n

i=1 i
2 = n(n+1)(2n+1)

6

Solution:

(b) Prove the following statement by induction: For every n ∈N,
∑n

i=1
1
i2 ≤ 2− 1

n

Solution:

(c) In class I showed a plot that implies the following statement is true: “polynomials are
smaller than exponentials.” Specifically, na = O(bn) for every a > 0 and b > 1. In this
problem you will use induction to prove a special case of this fact, that n2 = O(2n), by
induction.

Prove by induction that, for every n ≥ 4, n2 ≤ 2n.

Solution:

2



Problem 2. Asymptotic Order of Growth

(a) Rank the following functions in increasing order of asymptotic growth rate. That is, find
an ordering f1, f2, . . . , f10 of the functions so that fi =O(fi+1). No justification is required.

n5/2 4log2 n n! 7n log2(n!)
23n n2 log2(n) 8n 3log5 n log2(n

3)

Solution:

(b) Consider the following piece of code.

Algorithm 1: Waste some time

Function A(n):
Let m be the smallest power of 2 that is at least n (m = 2dlog2 ne)
For i = 1, . . . ,m3 : Do an operation

Give an asymptotic expression for the number of operations done by A(n) as a function of n
in Θ(·) notation. Justify your answer. Your expression should be as simple as possible—for
example, Θ(n) would be a better than Θ(100n+10).

Solution:

3



Problem 3. What Does This Code Do?

You encounter the following mysterious piece of code.

Algorithm 2: Mystery function

Function C(a,n):
If n = 1 :

Return (1, a)
ElseIf n = 2 :

Return (a,a · a)
ElseIf n is odd :

(u,v)← C(a,bn+12 c)
Return (u ·u,u · v)

ElseIf n is even :
(u,v)← C(a,bn+12 c)
Return (u · v,v · v)

(a) What are the results of C(a,3), C(a,4), and C(a,5). You do not need to justify your answers.

Solution:

(b) What does the code do in general? Prove your assertion by induction on n.

Solution:

(c) In this problem you will analyze the running time of C as a function of n. Prove that, for
every n ∈N, the number of multiplication operations performed in evaluating C(a,n) is at
most 2 · log2(n− 1) + 1 (where we use the convention that log2(0) = 0).

Solution:

4



Problem 4. IRL Divide and Conquer

A professor teaching an in-person class wants to count the number of students physically present
in the class. They came up with two plausible ways to count. In this question, you will analyze
the correctness and running time of these two solutions with respect to n, the number of students
in the class.

Algorithm 3: SimpleCounting
Find first student
First student says 1
While Students remain

Find the next student
Next student says (what last student said + 1)

(a) A loop invariant is a condition that holds true before and after every iteration of a loop.
We can often use loop invariants to help explain why an algorithm must produce correct
output. Identify such a loop invariant in SimpleCounting and use it to explain (informally)
why the algorithm is correct.

Solution:

(b) What is the running time of SimpleCounting with respect to the number of students in the
class n? Provide your answer in big-O notation and explain in words why this is the case.

Solution:

Algorithm 4: FancyCounting
Everyone initialize their number to 1
Everyone stand up
While More than 1 person is standing

Try to pair with your neighbor
If You are not in a pair :

Stay standing

Else
Sum up your numbers
Sit down if you are the tallest person in the pair

If you are standing, say your number

(a) As above, identify an appropriate loop invariant in FancyCounting and use it to explain
why the algorithm is correct. It would be sufficient, but is not necessary, to provide a
formal proof of correctness.

Solution:

(b) Write down a recurrence relation that describes the asymptotic runtime of FancyCounting
as the number of students in the class (n) grows.

Solution:

5



(c) Based on your recurrence relation above, what is the asymptotic runtime of FancyCount-
ing? Optional: Prove it by induction for a bonus point.

Solution:

(d) Optional: For a bonus point, explain what it is about Zoom that makes it very difficult
to run FancyCounting. Hint: The answer is not because people can’t stand up; replace
“stand up” with “raise hand.”

Solution:

6


