
Welcome	to	
CS	3000:	Algorithms	&	Data!

Section	1
Instructor	Tim	LaRock	(he/him/his)

larock.t@northeastern.edu
bit.ly/cs3000syllabus

 



Zoom	Notes
I	will	be	recording	our	Zoom	lectures.

Keep	both	your	video	and	audio	muted	at	all	times	unless	you	are	speaking.
• Multiple	video	streams	increases	the	bandwidth	required	for	a	smooth	video.
• As	I	understand	it:	

• If	you	are	muted,	you	are	not	part	of	the	recording.	
• If	you	unmute	your	video	or	audio,	you	will	be	recorded.

If	you	have	a	question,	use	the	chat	box	to	either	(a)	write	your	question	directly	or	
(b)	indicate	you	would	like	to	ask	a	question	out	loud.

• I	prefer	the	chat	to	the	“raise	hand”	feature	because	it	is	persistent.

The	Zoom	chat	is	always	archived.	I	will	probably	delete	it	very	soon	after	
recording.



Today
Brief	instructor	introduction

Some	presentation	of	the	what/why	of	Algorithms

Course	logistics	+	questions

Some	content



Me
Tim	LaRock	(he/him/his)

Just	call	me	Tim!

I	grew	up	in	the	Adirondack	Mountains

Researcher	at	the	Network	Science	Institute

Usually:	Understanding	how	thingsmove	
through	networks,	e.g.	how	a	ship	moves	
through	a	network	of	ports.

Lately:	Analyzing	mobility	data	to	
understand	the	impact	of	mobility	
restrictions	on	the	spread	of	COVID-19.

Now:	Your	instructor!

From	Here

Went	to	
college	
here

Now	
I’m	
here



This	Course
We	are	going	to	learn	about	algorithms,	which	are	sets	of	instructions	for	how	to	manipulate	data

Erickson	definition:	“An	algorithm	is	an	explicit,	precise,	unambiguous,	mechanically-executable	
sequence	of	elementary	instructions,	usually	intended	to	accomplish	a	specific	purpose.”

Specifically,	we	will	cover	things	like…
• Transforming	problems	from	informal	descriptions	to	formal	mathematical	descriptions
• Formulating	strategies	for	solving	formal	problems	efficiently
• Understanding,	designing,	and	choosing	appropriate	data	structures	for	our	solutions
• Proving	the	correctness	of	a	solution	mathematically
• Determining	the	complexity	in	terms	of	(i)	running	time	and	(ii)	memory	requirements	for	a	
proposed	solutions

• Categorize	problems	and	solutions	based	on	classes	of	complexity
• …and	much	more!



Why?



In	order	to	implement	anything,	we	first	need	to	communicate	clearly:

Reason	1:	Effective	communication	is	important!



In	order	to	implement	anything,	we	first	need	to	communicate	clearly:
1. What	is	the	problem	we	are	trying	to	solve?

Reason	1:	Effective	communication	is	important!



In	order	to	implement	anything,	we	first	need	to	communicate	clearly:
1. What	is	the	problem	we	are	trying	to	solve?
2. What	does	a	solution	to	the	problem	look	like?

Reason	1:	Effective	communication	is	important!



In	order	to	implement	anything,	we	first	need	to	communicate	clearly:
1. What	is	the	problem	we	are	trying	to	solve?
2. What	does	a	solution	to	the	problem	look	like?
3. How	we	can	go	from	the	input	to	a	solution?

Reason	1:	Effective	communication	is	important!



In	order	to	implement	anything,	we	first	need	to	communicate	clearly:
1. What	is	the	problem	we	are	trying	to	solve?
2. What	does	a	solution	to	the	problem	look	like?
3. How	we	can	go	from	the	input	to	a	solution?
4. Can	we	guarantee	that	a	solution	is	correct?

Reason	1:	Effective	communication	is	important!



In	order	to	implement	anything,	we	first	need	to	communicate	clearly:
1. What	is	the	problem	we	are	trying	to	solve?
2. What	does	a	solution	to	the	problem	look	like?
3. How	we	can	go	from	the	input	to	a	solution?
4. Can	we	guarantee	that	a	solution	is	correct?
5. Can	we	guarantee	a	solution	is	found	in	a	reasonable	amount	of	time?

Reason	1:	Effective	communication	is	important!



In	order	to	implement	anything,	we	first	need	to	communicate	clearly:
1. What	is	the	problem	we	are	trying	to	solve?
2. What	does	a	solution	to	the	problem	look	like?
3. How	we	can	go	from	the	input	to	a	solution?
4. Can	we	guarantee	that	a	solution	is	correct?
5. Can	we	guarantee	a	solution	is	found	in	a	reasonable	amount	of	time?
6. And	more…

In	this	course,	we	learn	mathematical	techniques	that	allow	us	to	
effectively	communicate	answers	to	these	questions.

Reason	1:	Effective	communication	is	important!



Reason	2:	Efficient	algorithms	are	important	in	practice!

Scalability	or	efficiency	of	an	algorithm	can	be	the	difference	between	a	
computation	running	in	5	minutes	or	never	finishing	before	the	heat	death	of	
the	universe.



Scalability	or	efficiency	of	an	algorithm	can	be	the	difference	between	a	
computation	running	in	5	minutes	or	never	finishing	before	the	heat	death	of	
the	universe.

“Recipe”	is	a	
classic	example	of	
an	algorithm

Reason	2:	Efficient	algorithms	are	important	in	practice!



Scalability	or	efficiency	of	an	algorithm	can	be	the	difference	between	a	
computation	running	in	5	minutes	or	never	finishing	before	the	heat	death	of	
the	universe.

Algorithm	for	
constructing	1	
PB&J	sandwich

Input:	2	slices	of	bread,	jar	of	PB,	jar	
of	jelly,	spreading	tool
Algorithm:
1.	Use	the	tool	to	spread	PB	on	one	
slice	of	bread
2.	Use	the	tool	to	spread	jelly	on	
the	slice	of	bread	without	peanut	
butter
3.	Put	the	two	slices	of	bread	
together	so	that	the	PB	and	J	are	
facing	each	other.
4.	Cut	in	half	if	desired.
Output:	PB&J

Reason	2:	Efficient	algorithms	are	important	in	practice!



Scalability	or	efficiency	of	an	algorithm	can	be	the	difference	between	a	
computation	running	in	5	minutes	or	never	finishing	before	the	heat	death	of	
the	universe.

Algorithm	for	
constructing	1	
PB&J	sandwich

Reason	2:	Efficient	algorithms	are	important	in	practice!

Input:	2	slices	of	bread,	jar	of	PB,	jar	
of	jelly,	spreading	tool,	desire,	
direction
Algorithm:
1.	Use	the	tool	to	spread	PB	on	one	
slice	of	bread
2.	Use	the	tool	to	spread	jelly	on	
the	slice	of	bread	without	peanut	
butter
3.	Put	the	two	slices	of	bread	
together	so	that	the	PB	and	J	are	
facing	each	other.
4.	Cut	in	half	if	desired.
CutInHalf(desire,	direction)
Output:	PB&J



Scalability	or	efficiency	of	an	algorithm	can	be	the	difference	between	a	
computation	running	in	5	minutes	or	never	finishing	before	the	heat	death	of	
the	universe.

Algorithm	for	
constructing	1	
PB&J	sandwich

Assume	it	takes	2	
minutes	to	make	a	
sandwich.

Reason	2:	Efficient	algorithms	are	important	in	practice!

Input:	2	slices	of	bread,	jar	of	PB,	jar	
of	jelly,	spreading	tool
Algorithm:
1.	Use	the	tool	to	spread	PB	on	one	
slice	of	bread
2.	Use	the	tool	to	spread	jelly	on	
the	slice	of	bread	without	peanut	
butter
3.	Put	the	two	slices	of	bread	
together	so	that	the	PB	and	J	are	
facing	each	other.
4.	Cut	in	half	if	desired.
Output:	PB&J



Scalability	or	efficiency	of	an	algorithm	can	be	the	difference	between	a	
computation	running	in	5	minutes	or	never	finishing	before	the	heat	death	of	
the	universe.

Algorithm	for	
constructing	1	
PB&J	sandwich

What	if	I	want	
N	>>	1	

PB&J	sandwiches?

Assume	it	takes	2	
minutes	to	make	a	
sandwich.

Reason	2:	Efficient	algorithms	are	important	in	practice!

Input:	2	slices	of	bread,	jar	of	PB,	jar	
of	jelly,	spreading	tool
Algorithm:
1.	Use	the	tool	to	spread	PB	on	one	
slice	of	bread
2.	Use	the	tool	to	spread	jelly	on	
the	slice	of	bread	without	peanut	
butter
3.	Put	the	two	slices	of	bread	
together	so	that	the	PB	and	J	are	
facing	each	other.
4.	Cut	in	half	if	desired.
Output:	PB&J



Scalability	or	efficiency	of	an	algorithm	can	be	the	difference	between	a	
computation	running	in	5	minutes	or	never	finishing	before	the	heat	death	of	
the	universe.

Algorithm	for	
constructing	N	
PB&J	sandwiches.

Runtime:	N*2	
minutes

What	if	I	want	
N	>>	1	

PB&J	sandwiches?

Assume	it	takes	2	
minutes	to	make	a	
sandwich.

Reason	2:	Efficient	algorithms	are	important	in	practice!

REPEAT	N	TIMES:
Input:	2	slices	of	bread,	jar	of	
PB,	jar	of	jelly,	spreading	tool
Algorithm:
1.	Use	the	tool	to	spread	PB	
on	one	slice	of	bread
2.	Use	the	tool	to	spread	jelly	
on	the	slice	of	bread	without	
peanut	butter
3.	Put	the	two	slices	of	bread	
together	so	that	the	PB	and	J	
are	facing	each	other.
4.	Cut	in	half	if	desired.
Output:	PB&J



Scalability	or	efficiency	of	an	algorithm	can	be	the	difference	between	a	
computation	running	in	5	minutes	or	never	finishing	before	the	heat	death	of	
the	universe.

Runtime:	N*2	
minutes

Probably	fine	if	I	
want	less	than	
N=10	sandwiches.

If	I	want	N=1000,	I	
will	quickly	run	out	
of	resources	and	
time!

What	if	I	want	
N	>>	1	

PB&J	sandwiches?

Reason	2:	Efficient	algorithms	are	important	in	practice!

REPEAT	N	TIMES:
Input:	2	slices	of	bread,	jar	of	
PB,	jar	of	jelly,	spreading	tool
Algorithm:
1.	Use	the	tool	to	spread	PB	
on	one	slice	of	bread
2.	Use	the	tool	to	spread	jelly	
on	the	slice	of	bread	without	
peanut	butter
3.	Put	the	two	slices	of	bread	
together	so	that	the	PB	and	J	
are	facing	each	other.
4.	Cut	in	half	if	desired.
Output:	PB&J



Scalability	or	efficiency	of	an	algorithm	can	be	the	difference	between	a	
computation	running	in	5	minutes	or	never	finishing	before	the	heat	death	of	
the	universe.

Sometimes	we	don’t	even	know	if	a	scalable	solution	to	a	problem	could	
possibly	exist	– the	techniques	you	learn	here	will	give	you	the	tools	to	answer	
that	question!

Reason	2:	Efficient	algorithms	are	important	in	practice!



Reason	3:	Algorithms/complexity	theory	is	an	
interesting	field	of	mathematics

Theoretical	advances	have	serious	practical	implications	(P=NP)



Problems	we	can	
solve	efficiently

Problems	we	can’t	
solve	efficiently	yet,	
but	if	we	could	solve	
1	efficiently,	they	
could	all	be	solved!

Theoretical	advances	have	serious	practical	implications	(P=NP)

Reason	3:	Algorithms/complexity	theory	is	an	
interesting	field	of	mathematics



Theoretical	advances	have	serious	practical	implications	(P=NP)

We	will	likely	touch	on	this	formally	towards	the	end	of	the	semester,	
but	take	Theory	of	Computation	to	learn	more!

Problems	we	can	
solve	efficiently

Problems	we	can’t	
solve	efficiently	yet,	
but	if	we	could	solve	
1	efficiently,	they	
could	all	be	solved!

Reason	3:	Algorithms/complexity	theory	is	an	
interesting	field	of	mathematics



Theoretical	advances	have	serious	practical	implications	(P=NP)

We	will	likely	touch	on	this	formally	towards	the	end	of	the	semester,	
but	take	Theory	of	Computation	to	learn	more!

Problems	we	can	
solve	efficiently

Problems	we	can’t	
solve	efficiently	yet,	
but	if	we	could	solve	
1	efficiently,	they	
could	all	be	solved!

Reason	3:	Algorithms/complexity	theory	is	an	
interesting	field	of	mathematics



Studying	algorithms	often	feels	like	solving	a	puzzle!

Bonus	Reason



Logistics



Logistics	- Course	Structure

Lectures	(like	this	one)	Monday	– Thursday,	1:30-3:10PM

Homework	– Approximately	weekly	(45%	of	grade)

Exams	– 2	Midterms	(15%	each)	and	a	final	exam	(25%)

Resources:	
Course	website:	bit.ly/cs3000syllabus
Canvas:	Contact	me	ASAP	(larock.t@northeastern.edu) if	you	do	not	have	
access!



Logistics	– Lecture	details

Lectures	(like	this	one)	Monday	– Thursday,	1:30-3:10PM

Recorded	live	and	uploaded	to	Canvas

Attendance	is	encouraged	if	possible,	but	not	required

Regardless	of	live	attendance,	it	is	expected that	you	have	watched	the	
lecture	at	some	point!	Anything	discussed	in	lecture	is	fair	game	for	
homework/exams!



Logistics	– Homework	details

Assigned	approximately	weekly,	with	variation	depending	on	timing	of	exams

Not	meant	to	take	you	hours	upon	hours	to	complete	– if	you	are	stuck,	ask	for	help	(more	
to	come	on	various	ways	to	do	so)

Collaboration	is okay!
Write	solutions	in	your	own	words	and	include	all	collaborators	names	on	everyone's	submissions

Copying	is not okay!!
We	reserve	the	right	to	ask	you	to	explain	any	answer	you	submitted!

Okay	to	look	up	resources	online	for	help,	but..
ALWAYS	evaluate	your	sources	carefully!

A	textbook	page	is	preferable	to	Wikipedia,	Wikipedia	is	much	more	reliable	than	a	stack	
exchange	answer	with	0	votes,	etc.	Use	your	judgement!

NEVER	copy	solutions	if	you	find	them.	
If	you	find	an	exact	answer	and	can’t	“unsee it”,	do	not	copy	it!	Just	send	me	an	email.



Logistics	– Exam	details

Exams	– 2	Midterms	and	a	final

All	“take	home”	format,	meaning	you	will	have	a	set	time	period	to	work	on	
them	outside	of	class

Similar	to	homework	assignments,	except	absolutely	NO	collaboration	is	
allowed	and	use	of	the	internet	is	limited	to	textbooks	ONLY

PLEASE	DO	NOT	CHEAT!

Obviously	we	are	on	the	honor	system,	and	my	default	attitude	is	to	trust	
you!	But	if	you	are	caught	cheating	there	will	be	severe	penalties,	including	

escalation	to	the	College	and/or	University	level.



Logistics	– Instructor	Office	Hours

I	will	hold	open	office	hours	at	the	following	times:

4-5	PM	on	Tuesdays
8:30-9:30	AM	on	Wednesdays

1:30-2:30	PM	on	Fridays

The	specific	structure	of	these	hours	is	not	decided	and	depends	
somewhat	on	level	of	demand.	

You	can	always reach	out	via	email	to	schedule	a	1-1	or	small	group	
conversation	with	me.



Logistics	– TAs	and	Office	Hours

We	have	8	Teaching	Assistants	for	the	course	– they	are	a	resource!

Name email Office	Hour	1 Office	Hour	2
Saurabha jirgi.s@husky.neu.edu Wednesday,	10AM-11AM Thursday,	11AM-12PM
Ronn jacob.r@husky.neu.edu Wednesday,	12PM-1PM Thursday,	12PM-1PM
Himanshu budhia.h@husky.neu.edu Tuesday,	4PM-5PM Monday,	12PM-1PM

Dania abuhijleh.d@husky.neu.edu Monday,	9AM-10AM Wednesday,	9AM-10AM

Drew bodmer.d@husky.neu.edu Thursday,	10AM-11AM Monday,	3PM-4PM

Angela gross.an@husky.neu.edu Wednesday,	12PM-1PM Friday,Friday	2PM-3PM
Luke boyer.l@husky.neu.edu Monday,	7PM-8PM Tuesday,	8PM-9PM
Kevin hui.k@husky.neu.edu Wednesday,	6PM-7PM Thursday,	6PM-7PM



Canvas

Northeastern’s replacement	for	Blackboard

New	to	me,	new	to	1/3	of	you	(according	to	entry	form)

Plan	to	use	it	for	a	couple	of	things:
Assignment	submission
Grades
Online	discussions

Everything	else	will	be	at:	bit.ly/cs3000syllabus



Logistics	– Online	Discussion

Canvas	has	online	discussion	boards,	I	encourage	you	to	post	there	
when	you	have	questions	you	aren’t	ready	to	bring	to	me/the	TAs	yet!

Obviously	it	is	not	okay	for	anyone	to	post	solutions	on	the	discussion	
board,	but	clarifying	and	helping	guide	classmates	is	okay.



Textbooks

I	will	assign	some	reading	from	two	freely	available	books:

1. Algorithms	by	Jeff	Erickson
2. Introduction	to	Algorithms	by	Cormen,	Leiserson and	Rivest (CLR)

See	the	syllabus	and	Canvas	for	links,	or	just	search	for	the	titles.

Algorithm	Design	by	Tardos and	Kleinberg	is	no	longer	required
• If	you	got	a	copy,	it	is	a	great	resource	that	I	encourage	you	to	use!



Answers	to	entry	form	questions

50	people	filled	it	out	– thank	you!



Answers	to	entry	form	questions

• Will	this	course	require	a	0-credit	recitation	like	in	the	fall,	and	will	we	also	
need	to	take	this?
• To	my	knowledge,	there	is	no	0-credit	recitation	for	this	course.

• Approximately	how	many	homework	assignments	will	we	have	in	this	
class?
• Between	5-7,	with	lowest	grade	dropped.

• How	many	hours	should	I	take	per	day	to	compete	the	homework?
• Homework	assignments	are	not	meant	to	take	over	your	life.	I	expect	between	1-5	
hours	over	the	course	of	a	week	(e.g.	~	1	hr per	day)	to	be	enough.

• When	are	homework	assignments	typically	due?
• Still	working	out	the	full	schedule,	but	most	will	likely	be	due	either	Fridays	or	
Mondays.



Answers	to	entry	form	questions

• When	will	we	know	the	dates/times	for	midterms/finals?
• I	will	try	to	finalize	the	schedule	and	let	you	know	ASAP.

• Is	there	any	coding	in	this	class?
• No,	sorry.	I	may	ask	a	coding	question	(in	your	fav	language)	as	extra	credit,	but	this	
class	is	not	intended	to	teach	you	about	programming.

• Can	I	get	some	useful	websites	for	learning	LaTeX?
• Yes.	I	will	also	try	to	spend	a	few	minutes	in	one	of	these	early	lectures	talking	about	
the	very	basics.

• A	couple	of	people	expressed	frustration	with	assumed	knowledge	across	
courses.
• I	will	try	to	explain	concepts	as	I	introduce	them,	but	there	are	prerequisites	for	the	
course	so	some	familiarity	with	the	topics	covered	in	those	is	assumed!	Feel	free	to	
ask	in	the	chat	if	you	aren’t	sure	what	I	am	talking	about.



More	questions	before	we	move	to	content?



Content



Refresher:	What	is	an	asymptote?

“…an	asymptote (/ˈæsɪmptoʊt/)	of	a	curve	is	a	line	such	that	the	distance	between	
the	curve	and	the	line	approaches	zero	as	one	or	both	of	the	x or	y coordinates	

tends	to	infinity.”	– Asymptote	on	Wikipedia



Refresher:	What	is	an	asymptote?

“…an	asymptote (/ˈæsɪmptoʊt/)	of	a	curve	is	a	line	such	that	the	distance	between	
the	curve	and	the	line	approaches	zero	as	one	or	both	of	the	x or	y coordinates	

tends	to	infinity.”	– Asymptote	on	Wikipedia



Asymptotes	and	Runtimes

What	do	asymptotes	have	to	do	with	algorithms?



Sorting

Sorting	is	extremely	important	to	computer	users	and	scientists!



Sorting

Sorting	is	extremely	important	to	computer	users	and	scientists!

A	simple	example:	Finding	the	median	of	a	set	of	numbers

Input: L, an array of N numbers
Output: The median of L
Procedure:

1. Sort L
2. If N is odd, return the number at L[⌈ "# ⌉]
3. If N is even, return the mean of the 

numbers at L[⌈ "# ⌉] and L[⌈
"
# ⌉+1]



Bubble	Sort

Idea:	Items	“bubble	up”	to	the	top	as	they	are	sorted	pairwise



Bubble	Sort

Idea:	Items	“bubble	up”	to	the	top	as	they	are	sorted	pairwise

Input: L, an array of N numbers
Output: L sorted in ascending order
Procedure:

Let swapped = True
while swapped = True:

swapped = False
for i from 1 to N-1:

if L[i] > L[i+1]:
Swap L[i] and L[i+1]
swapped = True



Bubble	Sort	Example

5		3		6		2		2



Bubble	Sort	Analysis
Input: L, an array of N numbers
Output: L sorted in ascending order
Procedure:

Let swapped = True
while swapped = True:

swapped = False
for i from 1 to N-1:

if L[i] > L[i+1]:
Swap L[i] and L[i+1]
swapped = True



Next	Time

A	better	approach	to	sorting

Divide	and	Conquer	Algorithms

More	asymptotic	analysis

Suggested	Reading:	
• Erickson	book:	Introduction	thru	Chapter	1.1
• CLR	book:	Introduction	thru	Chapter	2

Homework	1:	To	be	released	tomorrow,	due	next	Monday


