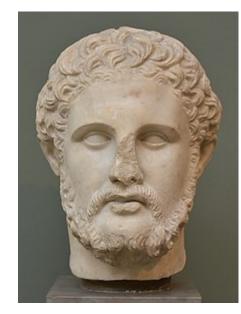
Lecture 2: Divide And Conquer



Section 1 Instructor Tim LaRock <u>larock.t@northeastern.edu</u> bit.ly/cs3000sylabus

Some business

No complaints about watching lectures via Canvas, going to keep doing it this way for now.

- Have fixed the layout so only the screen should be recorded
- Sharing screen directly from my iPad now, should go more smoothly (fingers crossed!)

Homework 1 to be released this evening; we will talk a bit about it at the end.

Decided against Discord/Slack, but also realized Canvas "discussions" are not full featured

• I will set up a Piazza instead (very sorry to do this late and add another thing!)

Student \rightarrow TA assignment to come

Some common growth functions, plotted

Loop invariants, take 2

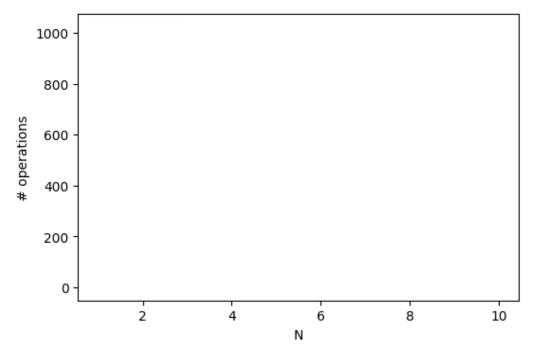
We break things off with BubbleSort (feat. bad memes)

Introduction to Divide and Conquer

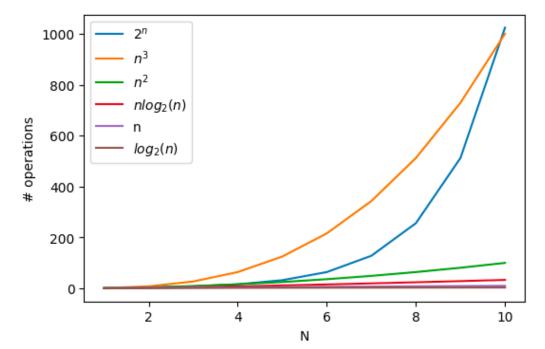
Very brief LaTeX "demo"

"...an **asymptote** (/'æsɪmptoʊt/) of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the *x* or *y* coordinates tends to infinity." – Asymptote on Wikipedia

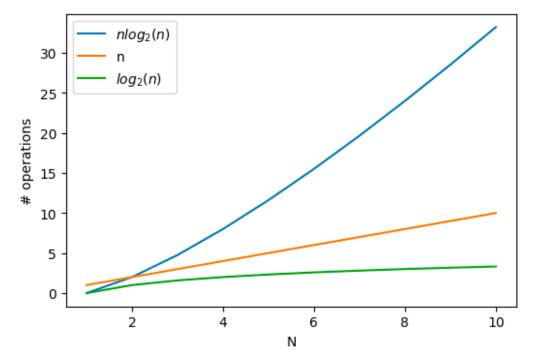
"...an **asymptote** (/'æsɪmptoʊt/) of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the *x* or *y* coordinates tends to infinity." – Asymptote on Wikipedia



"...an **asymptote** (/'æsɪmptoʊt/) of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the *x* or *y* coordinates tends to infinity." – Asymptote on Wikipedia



"...an **asymptote** (/'æsɪmptoʊt/) of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the *x* or *y* coordinates tends to infinity." – Asymptote on Wikipedia



From last time: Sorting

Sorting is extremely important to computer users and scientists!

A simple example: Finding the median of a set of numbers

```
Input: L, a list of N numbers
Output: The median of L
Procedure:
    1. Sort L
    2. If N is odd, return the number at L[[<sup>N</sup>/<sub>2</sub>]]
    3. If N is even, return the mean of the
    numbers at L[[<sup>N</sup>/<sub>2</sub>]] and L[[<sup>N</sup>/<sub>2</sub>]+1]
```

From last time: Bubble Sort

Idea: Items "bubble up" to the top as they are sorted pairwise

```
Input: L, a list of N numbers
Output: L sorted in ascending order
Procedure:
   Let swapped = True
   while swapped = True:
        swapped = False
        for i from 1 to N-1:
            if L[i] > L[i+1]:
               Swap L[i] and L[i+1]
               swapped = True
```

A loop invariant is a formal statement about the relationship between variables in [an algorithm] which holds true just before the loop is ever run (**establishing the invariant**) and is true again at the bottom of the loop, each time through the loop (**maintaining the invariant**).

A loop invariant is a formal statement about the relationship between variables in [an algorithm] which holds true just before the loop is ever run (**establishing the invariant**) and is true again at the bottom of the loop, each time through the loop (**maintaining the invariant**).

```
Input: L, a list of N numbers
Output: L sorted in ascending order
Procedure:
   Let swapped = True
   while swapped = True:
        swapped = False
        for i from 1 to N-1:
            if L[i] > L[i+1]:
               Swap L[i] and L[i+1]
               swapped = True
```

A loop invariant is a formal statement about the relationship between variables in [an algorithm] which holds true just before the loop is ever run (**establishing the invariant**) and is true again at the bottom of the loop, each time through the loop (**maintaining the invariant**).

```
Input: L, a list of N numbers
Output: L sorted in ascending order
Procedure:
   Let swapped = True
   while guarmed = True
```

```
while swapped = True:
    swapped = False
    for i from 1 to N-1:
        if L[i] > L[i+1]:
            Swap L[i] and L[i+1]
            swapped = True
```

Bubble sort loop invariant: After every iteration, the largest previously unsorted value is in its correct position.

A loop invariant is a formal statement about the relationship between variables in [an algorithm] which holds true just before the loop is ever run (**establishing the invariant**) and is true again at the bottom of the loop, each time through the loop (**maintaining the invariant**).

```
Input: L, a list of N numbers
Output: L sorted in ascending order
Procedure:
```

```
Let swapped = True
while swapped = True:
    swapped = False
    for i from 1 to N-1:
        if L[i] > L[i+1]:
            Swap L[i] and L[i+1]
            swapped = True
```

Bubble sort loop invariant: After every iteration, the largest previously unsorted value is in its correct position.

After *m* iterations of the while loop, the *m* largest values are in their correct positions.

A loop invariant is a formal statement about the relationship between variables in [an algorithm] which holds true just before the loop is ever run (**establishing the invariant**) and is true again at the bottom of the loop, each time through the loop (**maintaining the invariant**).

```
Input: L, a list of N numbers
Output: L sorted in ascending order
Procedure:
```

```
Let swapped = True
while swapped = True:
    swapped = False
    for i from 1 to N-1:
        if L[i] > L[i+1]:
            Swap L[i] and L[i+1]
            swapped = True
```

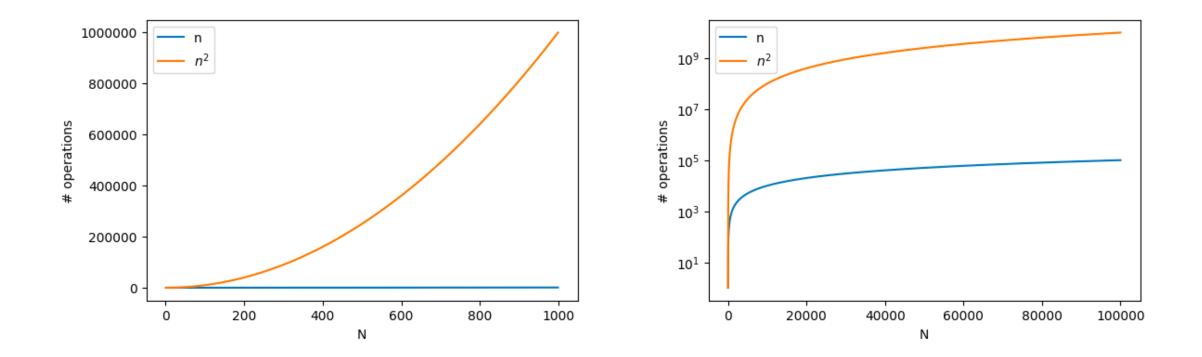
Bubble sort loop invariant: After every iteration, the largest previously unsorted value is in its correct position.

After *m* iterations of the while loop, the *m* largest values are in their correct positions.

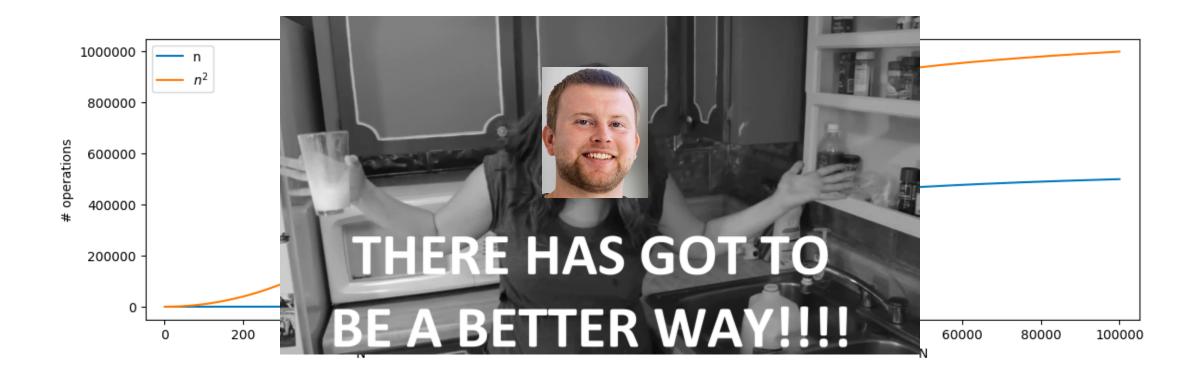
After *n* iterations, all values are in their correct positions.

Dumping BubbleSort: O(n²) is just not practical!

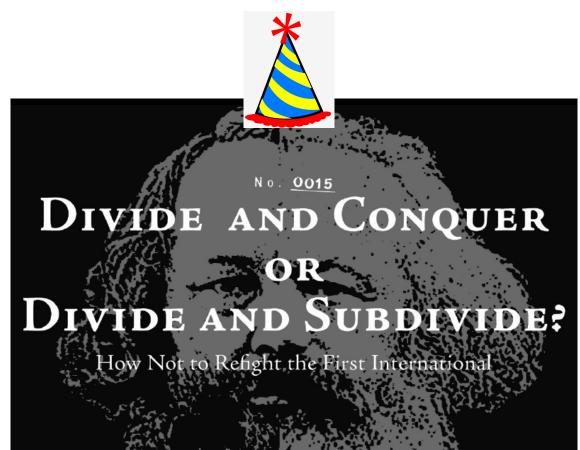
Dumping BubbleSort: $O(n^2)$ is just not practical!



Dumping BubbleSort: $O(n^2)$ is just not practical!

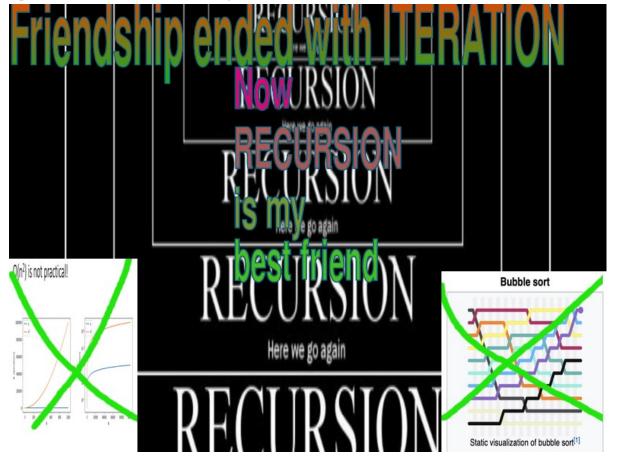


Enter: Divide and Conquer



What if....

Instead of sorting the entire input at once (as in bubble sort)....



...we could break the problem into smaller pieces to be sorted separately?

Merge Sort

Idea: Speed up sorting by splitting the input in half, sorting the smaller pieces separately, then merging the output.

Merge Sort

Idea: Speed up sorting by splitting the input in half, sorting the smaller pieces separately, then merging the output.

 $\frac{\text{MergeSort}(A[1..n]):}{\text{if } n > 1}$ $m \leftarrow \lfloor n/2 \rfloor$ $\text{MergeSort}(A[1..m]) \qquad \langle\langle \text{Recurse!} \rangle\rangle$ $\text{MergeSort}(A[m+1..n]) \qquad \langle\langle \text{Recurse!} \rangle\rangle$ Merge(A[1..n], m)

Merge(A[1n],m):
$i \leftarrow 1; j \leftarrow m+1$
for $k \leftarrow 1$ to n
if $j > n$
$B[k] \leftarrow A[i]; i \leftarrow i+1$
else if $i > m$
$B[k] \leftarrow A[j]; j \leftarrow j+1$
else if $A[i] < A[j]$
$B[k] \leftarrow A[i]; i \leftarrow i+1$
else
$B[k] \leftarrow A[j]; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

Erickson book section 1.4

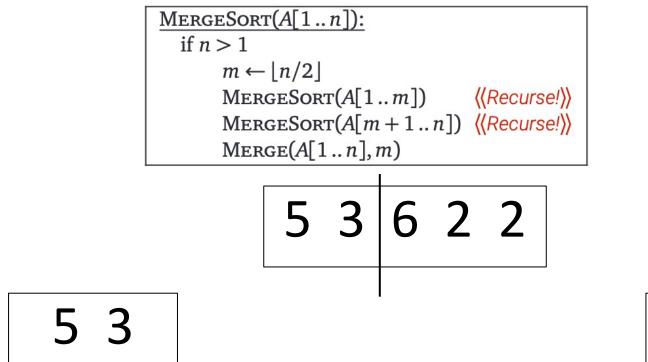
 $\begin{array}{l} \underline{\text{MergeSort}(A[1..n]):} \\ \text{if } n > 1 \\ m \leftarrow \lfloor n/2 \rfloor \\ \text{MergeSort}(A[1..m]) & \langle \langle \text{Recurse!} \rangle \rangle \\ \text{MergeSort}(A[m+1..n]) & \langle \langle \text{Recurse!} \rangle \rangle \\ \text{Merge}(A[1..n], m) & \langle \text{Merge}(A[1..n], m) \rangle \end{array}$

53622

 $\begin{array}{l} \underline{\operatorname{Merge}(A[1 \dots n], m):}\\ i \leftarrow 1; \ j \leftarrow m+1\\ \text{for } k \leftarrow 1 \text{ to } n\\ \text{ if } j > n\\ B[k] \leftarrow A[i]; \ i \leftarrow i+1\\ \text{else if } i > m\\ B[k] \leftarrow A[j]; \ j \leftarrow j+1\\ \text{else if } A[i] < A[j]\\ B[k] \leftarrow A[i]; \ i \leftarrow i+1\\ \text{else}\\ B[k] \leftarrow A[j]; \ j \leftarrow j+1\\ \text{for } k \leftarrow 1 \text{ to } n\\ A[k] \leftarrow B[k] \end{array}$

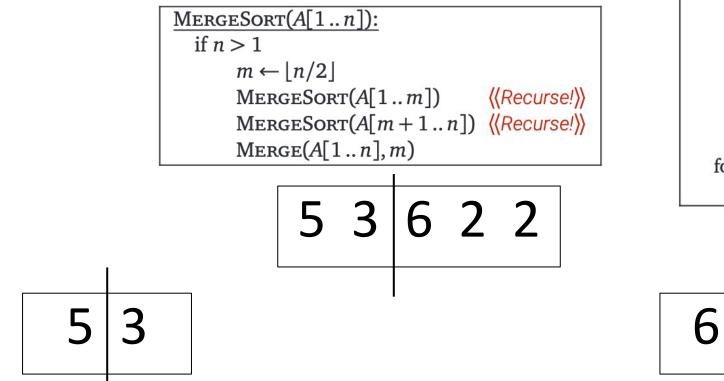
 $\begin{array}{l} \underline{\operatorname{MergeSort}(A[1..n]):} \\ \text{if } n > 1 \\ m \leftarrow \lfloor n/2 \rfloor \\ \operatorname{MergeSort}(A[1..m]) & \langle \langle \operatorname{Recurse!} \rangle \rangle \\ \operatorname{MergeSort}(A[m+1..n]) & \langle \langle \operatorname{Recurse!} \rangle \rangle \\ \operatorname{Merge}(A[1..n], m) & \langle \operatorname{Merge}(A[1.$

 $\begin{array}{l} \underline{\operatorname{Merge}(A[1..n],m):}\\ i \leftarrow 1; \ j \leftarrow m+1\\ \text{for } k \leftarrow 1 \text{ to } n\\ \text{ if } j > n\\ B[k] \leftarrow A[i]; \ i \leftarrow i+1\\ \text{else if } i > m\\ B[k] \leftarrow A[j]; \ j \leftarrow j+1\\ \text{else if } A[i] < A[j]\\ B[k] \leftarrow A[i]; \ i \leftarrow i+1\\ \text{else}\\ B[k] \leftarrow A[j]; \ j \leftarrow j+1\\ \text{for } k \leftarrow 1 \text{ to } n\\ A[k] \leftarrow B[k] \end{array}$



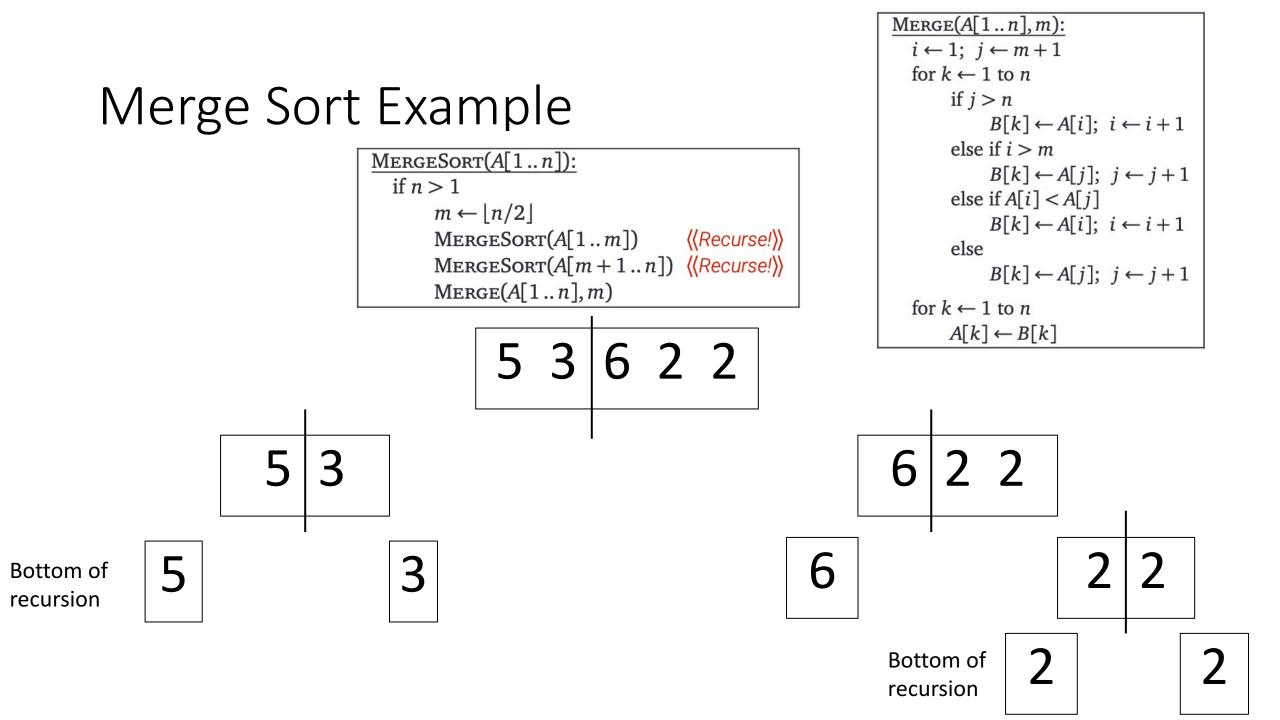
 $\begin{array}{l} \underline{\operatorname{Merge}(A[1 \dots n], m):}\\ i \leftarrow 1; \ j \leftarrow m+1\\ \text{for } k \leftarrow 1 \text{ to } n\\ \text{ if } j > n\\ B[k] \leftarrow A[i]; \ i \leftarrow i+1\\ \text{else if } i > m\\ B[k] \leftarrow A[j]; \ j \leftarrow j+1\\ \text{else if } A[i] < A[j]\\ B[k] \leftarrow A[i]; \ i \leftarrow i+1\\ \text{else}\\ B[k] \leftarrow A[j]; \ j \leftarrow j+1\\ \text{for } k \leftarrow 1 \text{ to } n\\ A[k] \leftarrow B[k] \end{array}$

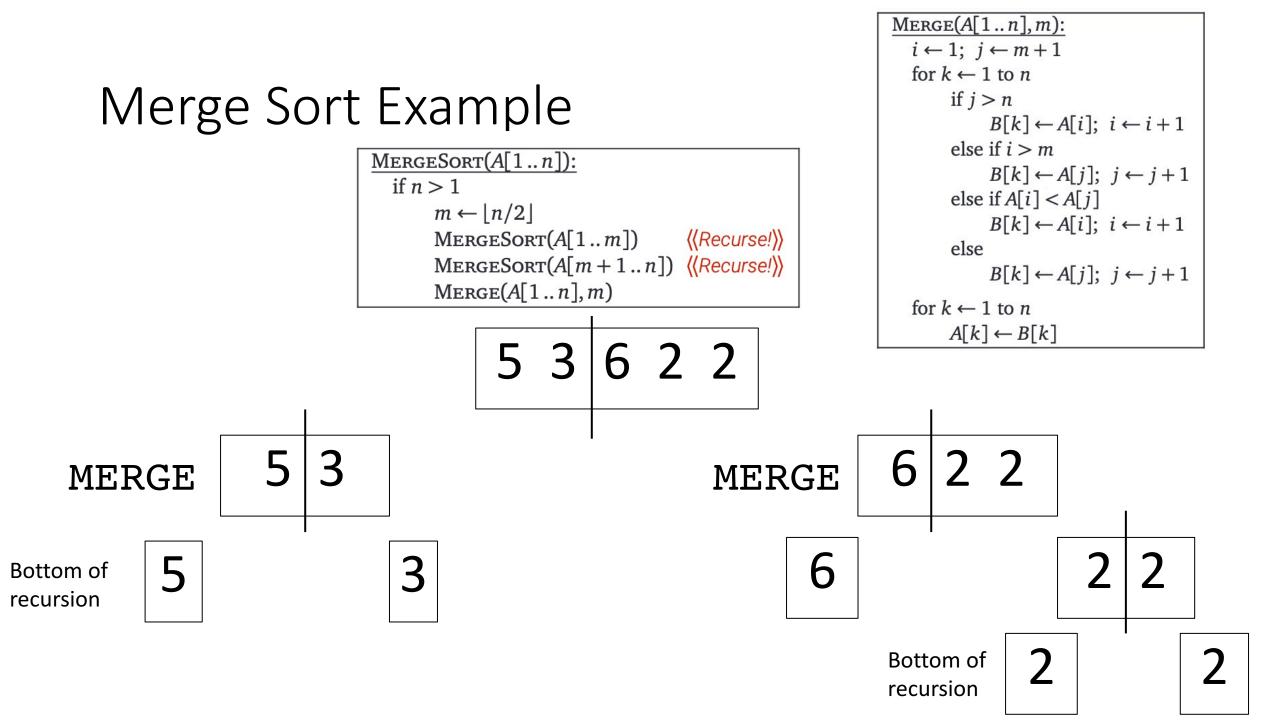
6	2	2	



 $\begin{array}{l} \underline{\operatorname{Merge}(A[1 \dots n], m):}\\ i \leftarrow 1; \ j \leftarrow m+1\\ \text{for } k \leftarrow 1 \text{ to } n\\ \text{ if } j > n\\ B[k] \leftarrow A[i]; \ i \leftarrow i+1\\ \text{else if } i > m\\ B[k] \leftarrow A[j]; \ j \leftarrow j+1\\ \text{else if } A[i] < A[j]\\ B[k] \leftarrow A[i]; \ i \leftarrow i+1\\ \text{else}\\ B[k] \leftarrow A[j]; \ j \leftarrow j+1\\ \text{for } k \leftarrow 1 \text{ to } n\\ A[k] \leftarrow B[k] \end{array}$

2 2





 $\begin{array}{l} \underline{\text{MergeSort}(A[1..n]):} \\ \text{if } n > 1 \\ m \leftarrow \lfloor n/2 \rfloor \\ \text{MergeSort}(A[1..m]) & \langle \langle \text{Recurse!} \rangle \rangle \\ \text{MergeSort}(A[m+1..n]) & \langle \langle \text{Recurse!} \rangle \rangle \\ \text{Merge}(A[1..n], m) & \langle \text{Merge}(A[1..n], m) \rangle \end{array}$

5 3 6 2 2

MERGE 35226

Merge(A[1..n], m): $i \leftarrow 1; j \leftarrow m+1$ for $k \leftarrow 1$ to nif j > n $B[k] \leftarrow A[i]; i \leftarrow i+1$ else if i > m $B[k] \leftarrow A[j]; j \leftarrow j+1$ else if A[i] < A[j] $B[k] \leftarrow A[i]; i \leftarrow i+1$ else $B[k] \leftarrow A[j]; j \leftarrow j+1$ for $k \leftarrow 1$ to n $A[k] \leftarrow B[k]$

Proof of Correctness

We can show formally that the output of MergeSort is correct by using 2 *proofs by induction*!

 $\begin{array}{l} \underline{\text{MergeSort}(A[1..n]):} \\ \text{if } n > 1 \\ m \leftarrow \lfloor n/2 \rfloor \\ \text{MergeSort}(A[1..m]) & \langle \langle \text{Recurse!} \rangle \rangle \\ \text{MergeSort}(A[m+1..n]) & \langle \langle \text{Recurse!} \rangle \rangle \\ \text{Merge}(A[1..n], m) \end{array}$

Merge(A[1n], m):
$i \leftarrow 1; j \leftarrow m+1$
for $k \leftarrow 1$ to n
if $j > n$
$B[k] \leftarrow A[i]; i \leftarrow i+1$
else if $i > m$
$B[k] \leftarrow A[j]; j \leftarrow j+1$
else if $A[i] < A[j]$
$B[k] \leftarrow A[i]; i \leftarrow i+1$
else
$B[k] \leftarrow A[j]; j \leftarrow j+1$
for $k \leftarrow 1$ to n
$A[k] \leftarrow B[k]$

Erickson book section 1.4

Proof by Induction Reminder

3 main steps to a proof by induction:

Merge Sort: Proof of Correctness

First show that MERGE is correct, then MergeSort.

 $\begin{array}{l} \underline{\mathsf{MergeSort}(A[1..n]):}\\ \text{if } n > 1\\ m \leftarrow \lfloor n/2 \rfloor\\ \mathrm{MergeSort}(A[1..m]) & \langle\!\langle \mathsf{Recurse!} \rangle\!\rangle\\ \mathrm{MergeSort}(A[m+1..n]) & \langle\!\langle \mathsf{Recurse!} \rangle\!\rangle\\ \mathrm{Merge}(A[1..n], m) & \langle\!\langle \mathsf{Recurse!} \rangle\!\rangle\end{array}$

Merge(A[1..n], m): $i \leftarrow 1; j \leftarrow m+1$ for $k \leftarrow 1$ to n if j > n $B[k] \leftarrow A[i]; i \leftarrow i+1$ else if i > m $B[k] \leftarrow A[j]; j \leftarrow j+1$ else if A[i] < A[j] $B[k] \leftarrow A[i]; i \leftarrow i+1$ else $B[k] \leftarrow A[i]; i \leftarrow i+1$ for $k \leftarrow 1$ to n $A[k] \leftarrow B[k]$

Merge: Proof of Correctness

```
Merge(A[1..n], m):
   i \leftarrow 1; j \leftarrow m+1
   for k \leftarrow 1 to n
         if j > n
                B[k] \leftarrow A[i]; i \leftarrow i+1
          else if i > m
                B[k] \leftarrow A[j]; j \leftarrow j+1
          else if A[i] < A[j]
                B[k] \leftarrow A[i]; i \leftarrow i+1
          else
                B[k] \leftarrow A[j]; j \leftarrow j+1
   for k \leftarrow 1 to n
         A[k] \leftarrow B[k]
```

We will show that for all k from 0 to n, the last n-k-1 iterations of the main loop correctly merge A[i..n] and A[j..m] into B[k..n].

Base case:

Merge: Proof of Correctness

```
Merge(A[1..n], m):
   i \leftarrow 1; j \leftarrow m+1
   for k \leftarrow 1 to n
         if j > n
                B[k] \leftarrow A[i]; i \leftarrow i+1
          else if i > m
                B[k] \leftarrow A[j]; j \leftarrow j+1
          else if A[i] < A[j]
                B[k] \leftarrow A[i]; i \leftarrow i+1
          else
                B[k] \leftarrow A[j]; j \leftarrow j+1
   for k \leftarrow 1 to n
         A[k] \leftarrow B[k]
```

We will show that for all k from 0 to n, the last n-k-1 iterations of the main loop correctly merge A[i..n] and A[j..m] into B[k..n].

Inductive Hypothesis:

Merge: Proof of Correctness

```
Merge(A[1..n], m):
   i \leftarrow 1; j \leftarrow m+1
   for k \leftarrow 1 to n
         if j > n
                B[k] \leftarrow A[i]; i \leftarrow i+1
          else if i > m
                B[k] \leftarrow A[j]; j \leftarrow j+1
          else if A[i] < A[j]
                B[k] \leftarrow A[i]; i \leftarrow i+1
          else
                B[k] \leftarrow A[j]; j \leftarrow j+1
   for k \leftarrow 1 to n
         A[k] \leftarrow B[k]
```

We will show that for all k from 0 to n, the last n-k-1 iterations of the main loop correctly merge A[i..n] and A[j..m] into B[k..n].

Proof:

MergeSort: Proof of Correctness

Base Case:

 $\begin{array}{l} \underline{\operatorname{MergeSort}(A[1..n]):} \\ \text{if } n > 1 \\ m \leftarrow \lfloor n/2 \rfloor \\ \operatorname{MergeSort}(A[1..m]) & \langle\!\langle \operatorname{Recurse!} \rangle\!\rangle \\ \operatorname{MergeSort}(A[m+1..n]) & \langle\!\langle \operatorname{Recurse!} \rangle\!\rangle \\ \operatorname{Merge}(A[1..n], m) & \langle\!\langle \operatorname{Recurse!} \rangle\!\rangle \end{array}$

Inductive Hypothesis:

Proof:

MergeSort: Runtime Analysis

 $\begin{array}{l} \underline{\operatorname{MergeSort}(A[1..n]):} \\ \text{if } n > 1 \\ m \leftarrow \lfloor n/2 \rfloor \\ \operatorname{MergeSort}(A[1..m]) & \langle \langle \operatorname{Recurse!} \rangle \rangle \\ \operatorname{MergeSort}(A[m+1..n]) & \langle \langle \operatorname{Recurse!} \rangle \rangle \\ \operatorname{Merge}(A[1..n], m) & \langle \operatorname{Merge}(A[1..n], m) \rangle \end{array}$

Merge(A[1..n], m): $i \leftarrow 1; j \leftarrow m+1$ for $k \leftarrow 1$ to n if j > n $B[k] \leftarrow A[i]; i \leftarrow i+1$ else if i > m $B[k] \leftarrow A[j]; j \leftarrow j+1$ else if A[i] < A[j] $B[k] \leftarrow A[i]; i \leftarrow i+1$ else $B[k] \leftarrow A[j]; j \leftarrow j+1$ for $k \leftarrow 1$ to n $A[k] \leftarrow B[k]$

Let's write down a *recurrence relation* that describes the runtime:

Recurrence Relations + Recurrence Trees

Formal Asymptotic Analysis

More Divide & Conquer

Suggested Readings:

Now: Brief LaTeX "demo"