
Lecture	2:	Divide	And	
Conquer

Section	1
Instructor	Tim	LaRock

larock.t@northeastern.edu
bit.ly/cs3000sylabus



Some	business

No	complaints	about	watching	lectures	via	Canvas,	going	to	keep	doing	it	this	way	
for	now.

• Have	fixed	the	layout	so	only	the	screen	should	be	recorded
• Sharing	screen	directly	from	my	iPad	now,	should	go	more	smoothly	(fingers	crossed!)

Homework	1	to	be	released	this	evening;	we	will	talk	a	bit	about	it	at	the	end.

Decided	against	Discord/Slack,	but	also	realized	Canvas	“discussions”	are	not	full	
featured

• I	will	set	up	a	Piazza	instead	(very	sorry	to	do	this	late	and	add	another	thing!)

Student	à TA	assignment	to	come



Today

Some	common	growth	functions,	plotted

Loop	invariants,	take	2

We	break	things	off	with	BubbleSort (feat.	bad	memes)

Introduction	to	Divide	and	Conquer

Very	brief	LaTeX “demo”



From	last	time:	Asymptotes	and	Runtimes

“…an	asymptote (/ˈæsɪmptoʊt/)	of	a	curve	is	a	line	such	that	the	distance	between	
the	curve	and	the	line	approaches	zero	as	one	or	both	of	the	x or	y coordinates	

tends	to	infinity.”	– Asymptote	on	Wikipedia

What	do	asymptotes	have	to	do	with	algorithms?
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From	last	time:	Sorting

Sorting	is	extremely	important	to	computer	users	and	scientists!

A	simple	example:	Finding	the	median	of	a	set	of	numbers

Input: L, a list of N numbers
Output: The median of L
Procedure:

1. Sort L
2. If N is odd, return the number at L[⌈ "

#
⌉]

3. If N is even, return the mean of the 
numbers at L[⌈ "

#
⌉] and L[⌈ "

#
⌉+1]



From	last	time:	Bubble	Sort

Idea:	Items	“bubble	up”	to	the	top	as	they	are	sorted	pairwise

Input: L, a list of N numbers
Output: L sorted in ascending order
Procedure:

Let swapped = True
while swapped = True:

swapped = False
for i from 1 to N-1:

if L[i] > L[i+1]:
Swap L[i] and L[i+1]
swapped = True



Loop	Invariant	Definition

A	loop	invariant	is	a	formal	statement	about	the	relationship	between	variables	in	[an	
algorithm]	which	holds	true	just	before	the	loop	is	ever	run	(establishing	the	invariant)	
and	is	true	again	at	the	bottom	of	the	loop,	each	time	through	the	loop	(maintaining	
the	invariant).	

Definition	source:	https://www.cs.miami.edu/home/burt/learning/Math120.1/Notes/LoopInvar.html
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is	in	its	correct	position.
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positions.



Dumping	BubbleSort:	O(n2)	is	just	not	practical!
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Enter:	Divide	and	Conquer

Image	credit:	libcom.org



What	if….
Instead	of	sorting	the	entire	input	at	once	(as	in	bubble	sort)….

…we	could	break	the	problem	into	smaller	pieces	to	be	sorted	separately?



Merge	Sort

Idea:	Speed	up	sorting	by	splitting	the	input	in	half,	sorting	the	
smaller	pieces	separately,	then	merging	the	output.
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Erickson	book	section	1.4
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Merge	Sort	Example

5		3		6		2		2

3	5	2	2	6MERGE



Proof	of	Correctness

We	can	show	formally	that	the	output	of	MergeSort is	correct	by	
using	2	proofs	by	induction!

Erickson	book	section	1.4



Proof	by	Induction	Reminder

3	main	steps	to	a	proof	by	induction:



Merge	Sort:	Proof	of	Correctness

First	show	that	MERGE	is	correct,	then	MergeSort.



Merge:	Proof	of	Correctness

We	will	show	that	for	all	k	from	0	to	n,	the	last	
n-k-1	iterations	of	the	main	loop	correctly	
merge	A[i..n]	and	A[j..m]	into	B[k..n].

Base	case:
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MergeSort:	Proof	of	Correctness
Base	Case:

Inductive	Hypothesis:

Proof:



MergeSort:	Runtime	Analysis

Let’s	write	down	a	recurrence	relation that	describes	the	runtime:



Next	Time

Recurrence	Relations	+	Recurrence	Trees

Formal	Asymptotic	Analysis

More	Divide	&	Conquer

Suggested	Readings:

Now:	Brief	LaTeX “demo”


