
Lecture 3
Asymptotic Notation and Recurrence Relations

Tim LaRock

larock.t@northeastern.edu
bit.ly/cs3000sylabus

May 6, 2020

 



Business

I Piazza is open. Please use it!!

I Email me if you are not in Canvas and/or Piazza at this point.

I Homework 1 is out as of last night. Due Monday night

11:59PM Boston time.

I There is a mistake in question 4. The condition of the while

loop in FancyCounting should read "while more than 1 person

is standing". I will update the LaTeX and PDF files after the

lecture.
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More Business

I TA o�ce hours are being worked out and loaded in to Piazza

under Sta� æ Resources. Thanks for bearing with us.

I Please email the person whose o�ce hours you plan to attend

beforehand to (1) let them know what you would like to talk

about and (2) let them know to expect someone in case there

is miscommunication about Zoom.

I You do not need to be super detailed, but it will help us to

know in advance what you want to talk about.
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Today

I Asymptotic Analysis Notation and Meaning

I Proving Recurrences

I Recursion Trees
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O, o, �, Ê, and � walk in to a bar...

I Asymptotic analysis is a powerful framework that allows us to

reason about many di�erent-but-related things

I Today I will define all of the notations, but keep in mind we

will mostly be interested in big-O
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Big-O: how big is it really?

I In words: Big-O and little-o notation asymptotically bound

functions from above, meaning they refer to upper bounds on

the asymptotic behavior of the function

I "How big can this function get?"

I Big-O definition:

O(g(n)) = {f (n) : there exist positive constants c and n0 such

that 0 Æ f (n) Æ cg(n) for all n Ø n0}
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A Note on Notation

O(g(n)) = {f (n) : there exist positive constants c and n0 such

that 0 Æ f (n) Æ cg(n) for all n Ø n0}

Note: O(g(n)) is a set, but we usually don’t write

f (n) œ O(g(n)). Rule of thumb:

I If the asymptotic term is alone on the right hand side of the

equation, e.g. 2n
2

= O(n
2
), the equal sign is equivalent to set

membership

I If the asymptotic term appears in the equation, e.g.

T (n) = 2n
2 ≠ O(n), the term is a stand in for "some function

bounded by O(n)."

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000sylabus
Lecture 3



Let’s draw a picture

O(g(n)) = {f (n) : there exist positive constants c and n0 such

that 0 Æ f (n) Æ cg(n) for all n Ø n0}
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O and o

I The definition of little-o is very similar, but it denotes bounds

that are not tight

o(g(n)) = {f (n) : for any positive constant c , there exists a

constant n0 > 0 such that 0 Æ f (n) Æ cg(n) for all n Ø n0}
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What makes a bound "tight"?

I An upper bound is tight if it is the smallest function that

provides an upper bound

I For example: If a function is bounded by n
2
, it is also true

that it is bounded by 2
n

(related to a homework problem!). 2
n

would be a loose upper bound to the function.

I We use capital letters (O, �, �) to denote tight bounds, and

lower-case letters (o, Ê, ◊) to denote bounds that have not

been shown to be tight

I We will primarily concern ourselves with tight bounds in this

class
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O and o

I The definition of little-o is very similar, but it denotes bounds

that are not tight

o(g(n)) = {f (n) : for any positive constant c , there exists a

constant n0 > 0 such that 0 Æ f (n) Æ cg(n) for all n Ø n0}

O(g(n)) = {f (n) : there exist positive constants c and n0 such

that 0 Æ f (n) Æ cg(n) for all n Ø n0}
I Intuitively:

I In a tight upper bound, the function f (n) "follows" or "scales

proportionately with" the bounding function g(n)

I In a loose upper bound, the function f (n) is "left behind"

because g(n) grows more quickly such that in the infinite limit

f (n)
g(n) goes to 0
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Quick Question

Is O(n
2
) a tight bound for BubbleSort?
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� and Ê

I In words: �-notation asymptotically bounds a function from

below

�(g(n)) = {f (n) : there exist positive constants c and n0
such that 0 Æ cg(n) Æ f (n) for all n Ø n0}

Ê(g(n)) = {f (n) : for any positive constant c , there exists a

constant n0 > 0 such that 0 Æ cg(n) Æ f (n) for all n Ø n0}
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Let’s update our picture

�(g(n)) = {f (n) : there exist positive constants c and n0 such

that 0 Æ cg(n) Æ f (n) for all n Ø n0}
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�

I In words: �-notation asymptotically bounds a function from

above and below

Theta(g(n)) = {f (n) : there exist positive constants c1, c2, and n0
such that 0 Æ c1g(n) Æ f (n) Æ c2g(n) for all n Ø n0}
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Let’s update our picture again

�(g(n)) = {f (n) : there exist positive constants c1, c2, and n0
such that 0 Æ c1g(n) Æ f (n) Æ c2g(n) for all n Ø n0}
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Summary

I Asymptotic analysis is a powerful and flexible framework for

reasoning about functional growth

I Capital symbols O and � represent tight bounds

I Tight upper bounds "follow" or "scale proportionately with"

the bounding function

I Loose upper bounds are "left behind" because the bounding

function grows more quickly

I We will be almost always interested in the big-O, worst-case

runtime of an algorithm
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That’s it!

I It is my birthday today, my gift to me (and thus you) is a

relatively short lecture

I Please take a look at the homework and start asking questions

on Piazza!

I Suggested reading for next time: Finish Erickson Chapter 1

(same as yesterday)

I Next time: More Divide and Conquer

I Proving Recursions

I Recursion Trees

I More
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