
Lecture 4
Recurrence Relations

Tim LaRock
larock.t@northeastern.edu

bit.ly/cs3000syllabus

May 7, 2020

1/19

larock.t@northeastern.edu
bit.ly/cs3000syllabus

2/19

Business

I Homework 1 due Monday night 11:59PM Boston time. Use
Piazza to ask questions!

I Office hours are in Piazza
I Pinned post describing all of them
I Zoom links under Staff → Resources.
I Please email the person whose office hours you plan to attend

beforehand! No need for a lot of detail, just when you are
joining and what you want to talk about.

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

3/19

Today

I Clean up asymptotic analysis from last time
I Proving Recurrences
I Recursion Trees

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

4/19

Summary from last time

I Asymptotic analysis is a powerful and flexible framework for
reasoning about functional growth

I Capital symbols O and Ω represent tight upper and lower
bounds
I Tight bounds "follow" or "scale proportionately with" the

bounding function
I Loose bounds are "left behind" because the bounding function

grows more quickly
I We will be almost always interested in the big-O, worst-case

runtime of an algorithm

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

5/19

Asymptotic notation, in 3 plots

I f (n) is the function we want to bound
I g(n) is the function we are using to bound f (n)
I c ∈ R plays slightly different roles for upper/lower:

I Upper: Push g(n) above f (n)
I Lower: Pull g(n) as close as possible to f (n)

CLR Textbook Figure 2.1
Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

6/19

Okay, back to recursion...

Recall:
I We studied MergeSort, a procedure for recursively sorting a list of

numbers
I We proved the correctness of MergeSort using two inductive proofs

I First we proved the subroutine Merge was correct, then we showed
that if Merge is correct MergeSort must also be correct.

I We wrote down a recurrence relation that describes the run time of
MergeSort

T (n) = 2T (n
2) + O(n)

I We claimed that T (n) = O(n log n). Today we will learn how to
show this is true.

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

7/19

Recursion Trees

I Divide and Conquer algorithms often have recurrences of the
form

T (n) = rT (n
c) + f (n)

for some constants r , c and some function f (n)

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

8/19

Recursion Trees

I Divide and Conquer algorithms often have recurrences of the
form

T (n) = rT (n
c) + f (n)

for some constants r , c and some function f (n)
I Question: What are r , c, and f (n) for MergeSort?

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

9/19

Recursion Trees

I Divide and Conquer algorithms often have recurrences of the
form

T (n) = rT (n
c) + f (n)

I We can solve recurrences using Recursion Trees

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

10/19

Recursion Trees

I Divide and Conquer algorithms often have recurrences of the
form

T (n) = rT (n
c) + f (n)

I We can solve recurrences using Recursion Trees

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

11/19

Recursion Trees

I We can solve a recurrence by summing the values in the nodes

T (n) =
L∑

i=0
r i f (n

bi)

where L = logc n represents the depth of the tree

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

12/19

Recursion Tree for MergeSort

Recall our simplified MergeSort recurrence

T (n) = 2T (n
2) + O(n)

I What will be the value of the root node in the recursion tree?
I How many nodes will be at the 2nd level?

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

13/19

Recursion Tree for MergeSort

T (n) = 2T (n
2) + O(n)

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

14/19

Recursion Tree for MergeSort

T (n) = 2T (n
2) + O(n)

Question: Can you see a straightforward way to get the sum of the nodes
in this tree? Hint: Think level-by-level

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

15/19

Recursion Tree for MergeSort

T (n) = 2T (n
2) + O(n)

There are 2i nodes at level i , each with value n
2i , so every level

sums to n. So we get

T (n) =
L∑

i=0
n

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

16/19

Recursion Tree for MergeSort

T (n) = 2T (n
2) + O(n)

T (n) =
L∑

i=0
n

I argue we are done now - why?

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

17/19

Recursion Tree for MergeSort

T (n) = 2T (n
2) + O(n)

T (n) =
L∑

i=0
n = O(nL) = O(n log n)

So we find confirm that MergeSort runs in O(n log n)

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

18/19

Wrap up

I Please work on the homework and ask questions on Piazza!
I No suggested reading for next class at this point. I may

announce some tomorrow.

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

19/19

Final Thoughts

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus

Lecture 4

larock.t@northeastern.edu
bit.ly/cs3000syllabus

