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Business

» Homework 1 due Monday night 11:59PM Boston time. Use
Piazza to ask questions!

» Office hours are in Piazza

» Pinned post describing all of them

» Zoom links under Staff — Resources.

» Please email the person whose office hours you plan to attend
beforehand! No need for a lot of detail, just when you are
joining and what you want to talk about.
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Today

» Clean up asymptotic analysis from last time
» Proving Recurrences

» Recursion Trees
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Summary from last time

» Asymptotic analysis is a powerful and flexible framework for
reasoning about functional growth

» Capital symbols O and €2 represent tight upper and lower
bounds

» Tight bounds "follow" or "scale proportionately with" the
bounding function

» Loose bounds are "left behind" because the bounding function
grows more quickly

» We will be almost always interested in the big-O, worst-case
runtime of an algorithm
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Asymptotic notation, in 3 plots
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» f(n) is the function we want to bound

» g(n) is the function we are using to bound f(n)

» ¢ € R plays slightly different roles for upper/lower:

» Upper: Push g(n) above f(n)
» Lower: Pull g(n) as close as possible to f(n)

CLR Textbook Figure 2.1
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Okay, back to recursion...

Recall:
» We studied MergeSort, a procedure for recursively sorting a list of
numbers

» We proved the correctness of MergeSort using two inductive proofs
» First we proved the subroutine Merge was correct, then we showed
that if Merge is correct MergeSort must also be correct.

» \We wrote down a recurrence relation that describes the run time of

MergeSort
n

2

» We claimed that T(n) = O(nlogn). Today we will learn how to
show this is true.

T(n)=2T(z)+ O(n)
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Recursion Trees

» Divide and Conquer algorithms often have recurrences of the

form
T(n) = rT(ﬁ) + f(n)

C
for some constants r, ¢ and some function f(n)
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Recursion Trees

» Divide and Conquer algorithms often have recurrences of the

form
n

T(n)=rT(=)+f(n)

C
for some constants r, ¢ and some function f(n)

» Question: What are r, ¢, and f(n) for MergeSort?
o — T/ N
()= 2T B 4o
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Recursion Trees

» Divide and Conquer algorithms often have recurrences of the

form
T(n) = rT(ﬁ) + f(n)

C
» \We can solve recurrences using Recursion Trees
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Recursion Trees

» Divide and Conquer algorithms often have recurrences of the
form [ = /@ N

T(n) = rT(Z) + f(n) =Y -

C
» \We can solve recurrences using Recursion Trees [ v L /)'1@(
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Figure 1.9. A recursion tree for the recurrence T(n) = r T(n/c) + f (n)
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Recursion Trees
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Figure 1.9. A recursion tree for the recurrence T(n) = r T(n/c) + f (n)

» We can solve a recurrence by summing the values in the nodes
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where L = log, n represents the depth of the tree
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Recursion Tree for MergeSort

Recall our simplified MergeSort recurrence

T(n) =2T(3) + O(n)

» \What will be the value of the root node in the recursion tree?

» How many nodes will be at the 2nd level?
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Recursion Tree for MergeSort

T(n) =2T(5) + O(n)

n/4 n/4 n/4 n/4

[n/8][n/8||n/8]|n/8]|n/8||n/8]||n/8||ns8]

Figure 1.10. The recursion tree for mergesort
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Recursion Tree for MergeSort

T(n) = 2T(3) + O(n)

n/4 n/4 n/4 n/4

[n/8||n/8|[n/8] [n/8||ns8|[n/8] [n/8||ns8]
Figure 1.10. The recursion tree for mergesort

Question: Can you see a straightforward way to get the sum of the nodes
in this tree? Hint: Think level-by-level
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Recursion Tree for MergeSort

Figure 1.10. The recursion tree for mergesort

n

There are 2/ nodes at level i, each with value 7

sums to n. So we get

so every level
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Recursion Tree for MergeSort

Figure 1.10. The recursion tree for mergesort

| argue we are done now - why?
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Recursion Tree for MergeSort

/N
T(n) =2T(5) + O(n) r (E)

T(n) = Z n= O(nL) = O(nlog n)
i=0

Figure 1.10. The recursion tree for mergesort

So we find confirm that MergeSort runs in O(nlog n)

Tim LaRock larock.t@northeastern.edu bit.ly/cs3000syllabus



Wrap up

» Please work on the homework and ask questions on Piazza!

» No suggested reading for next class at this point. | may
announce some tomorrow.
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Final Thoughts
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