Lecture 6: Backtracking

Tim LaRock
larock.t@northeastern.edu
bit.ly/cs3000syllabus

Business

Homework 1 should have been turned in last night before midnight

- If you did not ask for any extension, none will be granted

Homework 2 is released

- Due Next Tuesday 5/19 at 11:59PM Boston Time
- First 3 problems can be worked out after this lecture
- Problem 4 will be solvable after tomorrow

I owe a couple of people emails from this morning, will do so tonight
Slides (including reading assignment) are on the course website

- If they are not, I will stop and fix this

General point on homework

Do not wait until the last minute to read the questions
If you are struggling, ask questions early!

- Rule of thumb: If you spend more than 30 minutes on a problem and make little or no progress, ask a question on Piazza
- If you can't ask a question without giving away part of the solution, ask privately to the instructors on Piazza
- If you don't know how to start, ask a private question where you give some thoughts on how you could maybe approach the problem
- We can't help if you just say "I don't get it", we need somewhere to start!

There is a LaTeX tag on Piazza. Ask questions if you are having problems with LaTeX.

Today

Backtracking
N Queens
SubsetSum
Text Segmentation

Backtracking

- So far, we have seen cases where the next recursive call is clear
- In MergeSort, we need both left and right subarrays to be sorted
- In MOMSelect and BinarySearch, we guarantee the value we are looking for is in a specific subarray
- What if we can't tell from the start which decision to make?
- Enter backtracking: When we are not sure what to do, try one small step in both directions and evaluate all outcomes.

N Queens

Problem statement: Given an $n \times n$ dimensional chessboard, place n queens on the board such that none can attack each other.

Figure 2.1. Gauss's first solution to the 8 queens problem, represented by the array $[5,7,1,4,2,8,6,3]$

N Queens

Problem statement: Given an $n \times n$ dimensional chessboard, place n queens on the board such that none can attack each other.

Figure 2.1. Gauss's first solution to the 8 queens problem, represented by the array $[5,7,1,4,2,8,6,3]$
Given an arbitrary n, how can we decide where to place queens?

N Queens

Problem statement: Given an $n \times n$ dimensional chessboard, place n queens on the board such that none can attack each other.

Idea: Incrementally build a solution by placing one queen at a time!

Figure 2.1. Gauss's first solution to the 8 queens problem, represented by the array $[5,7,1,4,2,8,6,3]$
Given an arbitrary n, how can we decide where to place queens?

N Queens

Idea: Incrementally build a solution by placing one queen at a time!

```
PlaceQueens(Q[1..n], r):
    If r = n+1:
        print Q[1..n]
    Else:
        for }j\leftarrow1\mathrm{ to n:
        legal }\leftarrow Tru
        for i}\leftarrow1\mathrm{ tor - 1:
            if(Q[i]=j) or
                (Q[i]=j+r-i) or
                (Q[i] = j - r):
                        legal }\leftarrow Fals
        if legal:
            Q[r]}\leftarrow
        PlaceQueens(Q[1..n],r+1)
```


Figure 2.3. The complete recursion tree of Gauss and Laquière's algorithm for the 4 queens problem.

N Queens

Idea: Incrementally build a solution by placing one queen at a time!

```
PlaceQueens(Q[1..n], r):
    If r = n+1:
    print Q[1..n]
    Else:
        for }j\leftarrow1\mathrm{ to n:
        legal }\leftarrow Tru
        for i}\leftarrow1\mathrm{ tor r-1:
            if(Q[i]=j) or
                (Q[i]=j+r-i) or
                (Q[i] = j - r):
                        legal }\leftarrow Fals
        if legal:
            Q[r]}\leftarrow
            PlaceQueens(Q[1..n],r+1)
```


N Queens Wrap And Backtracking pattern

Idea: Incrementally build a solution by placing one queen at a time!

- Appropriate when a sequence of incremental decisions can enumerate solutions
- Solution is often itself a sequence, e.g. $\mathrm{Q}[1 . . \mathrm{n}]$ is a sequence of queens placed in rows 1..n
- Exactly 1 decision is made at every step
- We usually need some information about previous decisions, but this should be as small as possible
- Problem is solved by recursive brute force, meaning we do not "prune" decisions that are obviously bad (leaves in the tree)

Figure 2.3. The complete recursion tree of Gauss and Laquière's algorithm for the 4 queens problem.

Subset Sum

We are given a set of n positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and a target integer value T. We want to find a subset $\mathrm{Y} \subseteq X$ such that the sum of the elements $\sum_{x_{i} \in Y} x_{i}=T$.

Subset Sum

We are given a set of n positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and a target integer value T. We want to find a subset $\mathrm{Y} \subseteq X$ such that the sum of the elements $\sum_{x_{i} \in Y} x_{i}=T$.

Our problem: For a given T and X, does such a Y exist?

Subset Sum

We are given a set of n positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and a target integer value T. We want to find a subset $\mathrm{Y} \subseteq X$ such that the sum of the elements $\sum_{x_{i} \in Y} x_{i}=T$.

Our problem: For a given T and X, does such a Y exist?

$$
X=\{8,6,7,5,3,10,9\}, T=15
$$

Subset Sum

We are given a set of n positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and a target integer value T. We want to find a subset $\mathrm{Y} \subseteq X$ such that the sum of the elements $\sum_{x_{i} \in Y} x_{i}=T$.

Our problem: For a given T and X, does such a Y exist?

$$
X=\{11,6,5,1,7,13,12\}, T=15
$$

Subset Sum Solution and Example

We are given a set of n positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and a target integer value T. We want to find a subset $\mathrm{Y} \subseteq X$ such that the sum of the elements $\sum_{x_{i} \in Y} x_{i}=T$.

Our problem: For a given T and X, does such a Y exist?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Subset Sum Example

We are given a set of n positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and a target integer value T. We want to find a subset $\mathrm{Y} \subseteq X$ such that the sum of the elements $\sum_{x_{i} \in Y} x_{i}=T$.

Our problem: For a given T and X, does such a Y exist?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Subset Sum Example

We are given a set of n positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and a target integer value T. We want to find a subset $\mathrm{Y} \subseteq X$ such that the sum of the elements $\sum_{x_{i} \in Y} x_{i}=T$.

Our problem: For a given T and X, does such a Y exist?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Subset Sum Example

We are given a set of n positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and a target integer value T. We want to find a subset $\mathrm{Y} \subseteq X$ such that the sum of the elements $\sum_{x_{i} \in Y} x_{i}=T$.

Our problem: For a given T and X, does such a Y exist?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Subset Sum Correctness

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```

Trivially works for base cases:

- $\mathrm{T}=0 \rightarrow$ Always true (empty subset)
- $\mathrm{T}<0 \rightarrow$ Always false (our integers are >0)
- $\mathrm{n}=0$ (X is empty) \rightarrow Always false (no subset can add to any T)

Otherwise, if there is a subset that sums to T , it either contains $\mathrm{X}[\mathrm{i}]$ or it doesn't. Both of these possibilities are evaluated by the recursion fairy.

Subset Sum Running Time

Recurrence Relation?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Subset Sum Running Time

Recurrence Relation?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```

$T(n)=2 T(n-1)+O(1) \leq O\left(2^{n}\right)$

Subset Sum Running Time

Recurrence Relation?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```

$T(n)=2 T(n-1)+O(1) \leq O\left(2^{n}\right)$
(You can show with a recursion tree)

Subset Sum Wrap

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```

 \(T(n)=2 T(n-1)+O(1) \leq O\left(2^{n}\right)\)
 - Our algorithm tells us whether such a subset exists, but does not return the subset
- Relatively straightforward modifications to return the subset
- Our algorithm is not scalable
- We will see later this week how to use dynamic programming to speed it up by solving subproblems in a smart order and storing the solutions for reuse

Text Segmentation

Problem: Given an array $A[1 . . n]$ representing a sequence of n characters without spaces, determine whether the array can be subdivided into a sequence of words.

Text Segmentation

Problem: Given an array $A[1 . . n]$ representing a sequence of n characters without spaces, determine whether the array can be subdivided into a sequence of words.

Assume we are given a function $\operatorname{IsWord}(i, j)$. This function assumes A is a global variable and returns True if the subarray $A[i . . j]$ is a word in the language of the sequence.

- This allows us to avoid passing subarrays as arguments to functions.

Text Segmentation Example

t	h	e	b	r	o	w	n	f	o	x	i	s	q	u	i	c	k

The sentence: "the brown fox is quick"

Where are there potential problems for $\operatorname{IsWord}(i, j)$?

Text Segmentation Example

The sentence: "the brown fox is quick"
Where are there potential problems for $\operatorname{IsWord}(i, j)$?

Text Segmentation Example

The sentence: "the brown fox is quick"

Where are there potential problems for $\operatorname{IsWord}(i, j)$?

Text Segmentation Example

The sentence: "the brown fox is quick"

Where are there potential problems for $\operatorname{IsWord}(i, j)$?

Text Segmentation Example

The sentence: "the brown fox is quick"

Where are there potential problems for $\operatorname{IsWord}(i, j)$?

Text Segmentation Example

The sentence: "the brown fox is quick"

Where are there potential problems for $\operatorname{IsWord}(i, j)$?

Text Segmentation Example

The sentence: "the brown fox is quick"

Where are there potential problems for $\operatorname{IsWord}(i, j)$?
Recall the pattern from earlier:

- Sequence of decisions made 1 at a time
- "Does $A[i . . j]$ belong in my sequence of words?"

Text Segmentation Example

The sentence: "the brown fox is quick"

Where are there potential problems for $\operatorname{IsWord}(i, j)$?
Recall the pattern from earlier:

- Sequence of decisions made 1 at a time
- "Does $A[i . . j]$ belong in my sequence of words?"
- Recursive brute force
- Check every possible word, even if there might be a way to prune!

Text Segmentation Solution

```
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline\(t\) & \(h\) & \(e\) & \(b\) & \(r\) & \(o\) & \(w\) & \(n\) & \(f\) & \(o\) & \(x\) & \(i\) & \(s\) & \(q\) & \(u\) & \(i\) & \(c\) & \(k\) \\
\hline
\end{tabular}
\[
i=0 \uparrow
\]
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j\leftarrowi
        for i to n:
            If IsWord(i,j):
            If Splittable(A[1..n],j+1):
                return True
    return False
```


Text Segmentation Solution

Text Segmentation Solution

$$
\begin{aligned}
& i=0 \uparrow \uparrow \mathrm{j}=1
\end{aligned}
$$

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j\leftarrowi
        for i to n:
            If IsWord(i,j):
            If Splittable(A[1..n],j+1):
                return True
```

 return False

Text Segmentation Solution

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j\leftarrowi
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
```

 return False

Text Segmentation Solution

Splittable(A[1..n],i):
If $i>n$:
return True
Else:
$j \leftarrow i$
for i to n :
If $\operatorname{IsWord}(i, j)$:
If Splittable(A[1..n], $j+1)$: return True
return False

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{t} & \mathrm{~h} & \mathrm{e} & \mathrm{~b} & \mathrm{r} & \mathrm{o} & \mathrm{w} & \mathrm{n} & \mathrm{f} & \mathrm{o} & \mathrm{x} & \mathrm{i} & \mathrm{~s} & \mathrm{a} & \mathrm{u} & \mathrm{i} & \mathrm{c} & \mathrm{k} \\
\hline
\end{array} \\
& i=0 \uparrow \quad \uparrow \mathrm{j}=2 \quad \text { Splittable }(A[1 . . n], j+1=2)
\end{aligned}
$$

Text Segmentation Solution

Splittable (A[1..n],i):
If $i>n$:
return True
Else:
$j \leftarrow i$ for i to n :

If $\operatorname{IsWord}(i, j)$:
If Splittable(A[1..n], $j+1)$: return True
return False

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{t} & \mathrm{~h} & \mathrm{e} & \mathrm{~b} & \mathrm{r} & \mathrm{o} & \mathrm{w} & \mathrm{n} & \mathrm{f} & \mathrm{o} & \mathrm{x} & \mathrm{i} & \mathrm{~s} & \mathrm{a} & \mathrm{u} & \mathrm{i} & \mathrm{c} & \mathrm{k} \\
\hline
\end{array} \\
& i=0 \uparrow \quad \uparrow \mathrm{j}=2 \quad \text { Splittable }(A[1 . . n], j+1=2)
\end{aligned}
$$

Text Segmentation Solution

Splittable (A[1..n],i):
If $i>n$:
return True
Else:
$j \leftarrow i$ for i to n :

If $\operatorname{IsWord}(i, j)$:
If Splittable(A[1..n], $j+1)$: return True
return False

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{t} & \mathrm{~h} & \text { e } & \text { b } & \mathrm{r} & \mathrm{o} & \mathrm{w} & \mathrm{n} & \mathrm{f} & \mathrm{o} & \mathrm{x} & \mathrm{i} & \mathrm{~s} & \mathrm{q} & \mathrm{u} & \mathrm{i} & \mathrm{c} & \mathrm{k} \\
\hline
\end{array} \\
& i=0 \uparrow \quad \uparrow \mathrm{j}=2 \quad \text { Splittable }(A[1 . . n], j+1=2)
\end{aligned}
$$

Text Segmentation Solution

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
    return False
```

$$
\begin{aligned}
& i=0 \uparrow \quad \uparrow \mathrm{j}=2 \quad \text { Splittable (A[1..n], } j+1=2 \text {) }
\end{aligned}
$$

What is going to happen?

Text Segmentation Solution

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
    return False
```

$$
\begin{aligned}
& i=0 \uparrow \quad \uparrow \mathrm{j}=2 \quad \text { Splittable (A[1..n], } j+1=2 \text {) }
\end{aligned}
$$

What is going to happen?
"nfoxisquick" is not a word, so:

- i never becomes greater than n

Text Segmentation Solution

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
    return False
```

What is going to happen?
"nfoxisquick" is not a word, so:

- i never becomes greater than n
- IsWord (i, j) is never true

Text Segmentation Solution

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                        return True
    return False
```

$$
\begin{aligned}
& i=0 \uparrow \quad \uparrow \mathrm{j}=2 \quad \text { Splittable }(A[1 . . n], j+1=2)
\end{aligned}
$$

What is going to happen?
"nfoxisquick" is not a word, so:

- i never becomes greater than n
- IsWord (i, j) is never true
- Splittable (A[1..n], $j+1=6$) returns False

Text Segmentation Solution

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                        return True
    return False
```

$$
\begin{aligned}
& i=0 \uparrow \quad \uparrow \mathrm{j}=2 \quad \text { Splittable (A[1..n], } j+1=2 \text {) }
\end{aligned}
$$

What is going to happen?
"nfoxisquick" is not a word, so:

- i never becomes greater than n
- IsWord (i, j) is never true
- Splittable ($A[1 . . n], j+1=6$) returns False
- We go back to the loop!

Text Segmentation Solution

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                        return True
    return False
```

$$
\begin{aligned}
& i=0 \uparrow \quad \uparrow \mathrm{j}=2 \quad \text { Splittable (A[1..n], } j+1=2)
\end{aligned}
$$

What is going to happen?
"nfoxisquick" is not a word, so:

- i never becomes greater than n
- IsWord (i, j) is never true
- Splittable (A[1..n], $j+1=6)$ returns False
- We go back to the loop!

Text Segmentation Solution

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                        return True
    return False
```

$$
i=0 \uparrow \quad \uparrow \mathrm{j}=2 \quad \text { Splittable }(A[1 . . n], j+1=2)
$$

What is going to happen?
"nfoxisquick" is not a word, so:

- i never becomes greater than n
- IsWord (i, j) is never true
- Splittable (A[1..n], $j+1=6)$ returns False
- We go back to the loop!

Text Segmentation Solution

Splittable (A[1..n],i):
If $i>n$:
return True
Else:
$j \leftarrow i$ for i to n :

If $\operatorname{IsWord}(i, j):$ If Splittable(A[1..n],j+1): return True
return False

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{t} & \mathrm{~h} & \mathrm{e} & \mathrm{~b} & \mathrm{r} & \mathrm{o} & \mathrm{w} & \mathrm{n} & \mathrm{f} & \mathrm{o} & \mathrm{x} & \mathrm{i} & \mathrm{~s} & \mathrm{a} & \mathrm{u} & \mathrm{i} & \mathrm{c} & \mathrm{k} \\
\hline
\end{array} \\
& i=0 \uparrow \quad \uparrow \mathrm{j}=2 \quad \text { Splittable (A[1..n], } j+1=2 \text {) }
\end{aligned}
$$

Eventually....

t	h	e	b	b	r	0	w		n	f	o	x		i	s	q	u	i	c		k
															$=1$						

Text Segmentation Solution

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
    return False
```

$$
\begin{aligned}
& i=0 \uparrow \quad \uparrow \mathrm{j}=2 \quad \text { Splittable (A[1..n], } j+1=2)
\end{aligned}
$$

Eventually....

$$
\operatorname{Splittable}(A[1 . . n], j+1=19)
$$

Text Segmentation Solution

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
    return False
```

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{t} & \mathrm{~h} & \mathrm{e} & \mathrm{~b} & \mathrm{r} & \mathrm{o} & \mathrm{w} & \mathrm{n} & \mathrm{f} & \mathrm{o} & \mathrm{x} & \mathrm{i} & \mathrm{~s} & \mathrm{q} & \mathrm{u} & \mathrm{i} & \mathrm{c} & \mathrm{k} \\
\hline
\end{array} \\
& i=0 \uparrow \quad \uparrow \mathrm{j}=2 \quad \operatorname{Splittable}(A[1 . . n], j+1=2)
\end{aligned}
$$

Eventually....

t	h		e	b	r	-		w	n	f	o	x	i	s	q	u	i		k	k
														=						

$$
\operatorname{Splittable}(A[1 . . n], j+1=19)
$$

$19>n$, returns True!

Text Segmentation Correctness

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
    return False
```

Base case: $n=1$. Either:

- IsWord $(1,1)$ returns False, in which case the loop ends and the algorithm returns False, or
- IsWord $(1,1)$ returns True, in which case Splittable (A[1..n], 2) returns True

Text Segmentation Correctness

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
    return False
```

Base case: $n=1$. Either:

- IsWord $(1,1)$ returns False, in which case the loop ends and the algorithm returns False, or
- IsWord $(1,1)$ returns True, in which case Splittable (A[1..n], 2) returns True

Assuming $\operatorname{IsWord}(i, j)$ is correct and $\operatorname{Splittable}(A[1 . . k], 1)$ is correct for $1 \leq k \leq n$, we immediately see that it must be correct for Splittable $(A[1 . . n+1], 1)$, since this runs the algorithm on inputs of maximum size $n-1<n$.

Text Segmentation Analysis

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j
        for i to n:
            If IsWord(i,j):
            If Splittable(A[1..n],j+1):
                return True
    return False
```

Since we do not know the running time of IsWord (i, j), we will instead express the running time as the number of calls we make to it.

$$
T(n) \leq \sum_{i=0}^{n-1} T(i)+O(n)
$$

Text Segmentation Analysis

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
    return False
```

Since we do not know the running time of IsWord (i, j), we will instead express the running time as the number of calls we make to it.

$$
T(n) \leq \sum_{i=0}^{n-1} T(i)+O(n)
$$

Text Segmentation Analysis

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
    return False
```

Since we do not know the running time of IsWord (i, j), we will instead express the running time as the number of calls we make to it.

$$
\begin{aligned}
& T(n) \leq \sum_{i=0}^{n-1} T(i)+O(n) \\
& \begin{array}{l}
\text { Worst case: calling } \\
\begin{array}{l}
\text { Splittable on every } \\
\text { subsequence }
\end{array}
\end{array} \quad \begin{array}{l}
\text { folling IsWord } n \text { items }
\end{array} \\
& \hline
\end{aligned}
$$

Text Segmentation Analysis

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
    return False
```

Since we do not know the running time of IsWord (i, j), we will instead express the running time as the number of calls we make to it.

$$
\begin{aligned}
& T(n) \leq \sum_{i=0}^{n-1} T(i)+O(n) \\
& T(n) \leq \sum_{i=0}^{n-1} T(i)+c n
\end{aligned}
$$

Text Segmentation Analysis

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
    return False
```

Since we do not know the running time of IsWord (i, j), we will instead express the running time as the number of calls we make to it.

$$
\begin{aligned}
T(n) & \leq \sum_{i=0}^{n-1} T(i)+O(n) \\
T(n) & \leq \sum_{i=0}^{n-1} T(i)+c n \\
T(n-1) & \leq \sum_{i=0}^{n-1} T(i)+c(n-1)
\end{aligned}
$$

Text Segmentation Analysis

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                return True
    return False
```

Since we do not know the running time of IsWord (i, j), we will instead express the running time as the number of calls we make to it.

$$
\begin{gathered}
T(n) \leq \sum_{i=0}^{n-1} T(i)+O(n) \\
T(n) \leq \sum_{i=0}^{n-1} T(i)+c n \\
T(n-1) \leq \sum_{i=0}^{n-2} T(i)+c(n-1) \\
T(n)-T(n-1) \leq T(n-1)+c
\end{gathered}
$$

Text Segmentation Analysis

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j}
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                        return True
    return False
```

Since we do not know the running time of IsWord (i, j), we will instead express the running time as the number of calls we make to it.

$$
\begin{gathered}
T(n) \leq \sum_{i=0}^{n-1} T(i)+O(n) \\
T(n) \leq \sum_{i=0}^{n-1} T(i)+c n \\
T(n-1) \leq \sum_{i=0}^{n-1} T(i)+c(n-1) \\
T(n)-T(n-1) \leq T(n-1)+c \\
T(n)=T(n-1)+T(n-1)+c=2 T(n-1)+c
\end{gathered}
$$

Text Segmentation Analysis

```
Splittable(A[1..n],i):
    If i > n:
        return True
    Else:
        j
        for i to n:
            If IsWord(i,j):
                If Splittable(A[1..n],j+1):
                        return True
    return False
```

$$
T(n)=2 T(n-1)+c \leq O\left(2^{n}\right)
$$

(You can show with a recursion tree)

Since we do not know the running time of $\operatorname{IsWord}(i, j)$, we will instead express the running time as the number of calls we make to it.

$$
\begin{gathered}
T(n) \leq \sum_{i=0}^{n-1} T(i)+O(n) \\
T(n) \leq \sum_{i=0}^{n-1} T(i)+c n \\
T(n-1) \leq \sum_{i=0}^{n-1} T(i)+c(n-1) \\
T(n)-T(n-1) \leq T(n-1)+c \\
T(n)=T(n-1)+T(n-1)+c=2 T(n-1)+c
\end{gathered}
$$

Wrap up

Homework 2 is out - read through it ASAP!

- Problem 4 is not solvable yet, the first 3 are after this lecture.

Next time:

- Dynamic Programming

Reading Assignment: Erickson Chapter 3 (for real this time)

