
Lecture	6:	Backtracking
Tim	LaRock

larock.t@northeastern.edu
bit.ly/cs3000syllabus



Business

Homework	1	should	have	been	turned	in	last	night	before	midnight
• If	you	did	not	ask	for	any	extension,	none	will	be	granted

Homework	2	is	released
• Due	Next	Tuesday	5/19	at	11:59PM	Boston	Time
• First	3	problems	can	be	worked	out	after	this	lecture
• Problem	4	will	be	solvable	after	tomorrow

I	owe	a	couple	of	people	emails	from	this	morning,	will	do	so	tonight

Slides	(including	reading	assignment)	are	on	the	course	website
• If	they		are	not,	I	will	stop	and	fix	this



General	point	on	homework

Do	not	wait	until	the	last	minute	to	read	the	questions

If	you	are	struggling,	ask	questions	early!
• Rule	of	thumb:	If	you	spend	more	than	30	minutes	on	a	problem	and	make	
little	or	no	progress,	ask	a	question	on	Piazza
• If	you	can’t	ask	a	question	without	giving	away	part	of	the	solution,	ask	
privately	to	the	instructors	on	Piazza
• If	you	don’t	know	how	to	start,	ask	a	private	question	where	you	give	some	
thoughts	on	how	you	could	maybe	approach	the	problem
• We	can’t	help	if	you	just	say	“I	don’t	get	it”,	we	need	somewhere	to	start!

There	is	a	LaTeX tag	on	Piazza.	Ask	questions	if	you	are	having	problems	
with	LaTeX.	



Today

Backtracking
N	Queens
SubsetSum
Text	Segmentation



Backtracking

• So	far,	we	have	seen	cases	where	the	next	recursive	call	is	clear
• In	MergeSort,	we	need	both	left	and	right	subarrays	to	be	sorted

• In	MOMSelect and	BinarySearch,	we	guarantee	the	value	we	are	looking	for	is		
in	a		specific	subarray

• What	if	we	can’t	tell	from	the	start	which	decision	to	make?

• Enter	backtracking:	When	we	are	not	sure	what	to	do,	try	one	small	
step	in	both	directions	and	evaluate	all	outcomes.



N	Queens

Problem	statement:	Given	an	nxn dimensional	chessboard,	place	n
queens	on	the	board	such	that	none	can	attack	each	other.



N	Queens

Problem	statement:	Given	an	nxn dimensional	chessboard,	place	n
queens	on	the	board	such	that	none	can	attack	each	other.

Given	an	arbitrary	n,	how	can	we	decide	where	to	place	queens?



N	Queens

Problem	statement:	Given	an	nxn dimensional	chessboard,	place	n
queens	on	the	board	such	that	none	can	attack	each	other.

Given	an	arbitrary	n,	how	can	we	decide	where	to	place	queens?

Idea:	Incrementally	build	
a	solution	by	placing	one	

queen	at	a	time!



N	Queens
Idea:	Incrementally	build	a	solution	by	placing	one	queen	at	a	time!

PlaceQueens(Q[1..n], r):
If r = n+1:
print Q[1..n]

Else:
for 𝑗	 ← 	1	to n:
legal ← True
for 𝑖	 ← 1	to	r − 1:

if(Q[i]=j) or 
(Q[i]=j+r-i) or 
(Q[i] = j – r):

legal ← False
if legal:

Q[r]← j
PlaceQueens(Q[1..n], r+1)



N	Queens
Idea:	Incrementally	build	a	solution	by	placing	one	queen	at	a	time!

PlaceQueens(Q[1..n], r):
If r = n+1:
print Q[1..n]

Else:
for 𝑗	 ← 	1	to n:
legal ← True
for 𝑖	 ← 1	to	r − 1:

if(Q[i]=j) or 
(Q[i]=j+r-i) or 
(Q[i] = j – r):

legal ← False
if legal:

Q[r]← j
PlaceQueens(Q[1..n], r+1)



N	Queens	Wrap	And	Backtracking	pattern
Idea:	Incrementally	build	a	solution	by	placing	one	queen	at	a	time!

• Appropriate	when	a	sequence	of	
incremental	decisions	can	enumerate	
solutions
• Solution	is	often	itself	a	sequence,	e.g.	
Q[1..n]	is	a	sequence	of	queens	placed	in	
rows	1..n

• Exactly	1	decision	is	made	at	every	step
• We	usually	need	some	information	about	
previous	decisions,	but	this	should	be	as	
small	as	possible	

• Problem	is	solved	by	recursive	brute	
force,	meaning	we	do	not	“prune”	
decisions	that	are	obviously	bad	(leaves	
in	the	tree)



Subset	Sum

We	are	given	a	set	of	𝑛 positive	integers	𝑋 = 	 𝑥.,	𝑥0,	 … , 𝑥2 and	a	
target	integer	value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋 such	that	the	

sum	of	the	elements	∑ 𝑥7 = 𝑇�
9:∈< .



Subset	Sum

We	are	given	a	set	of	𝑛 positive	integers	𝑋 = 	 𝑥.,	𝑥0,	 … , 𝑥2 and	a	
target	integer	value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋 such	that	the	

sum	of	the	elements	∑ 𝑥7 = 𝑇�
9:∈< .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	such	a	Y exist?



Subset	Sum

We	are	given	a	set	of	𝑛 positive	integers	𝑋 = 	 𝑥.,	𝑥0,	 … , 𝑥2 and	a	
target	integer	value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋 such	that	the	

sum	of	the	elements	∑ 𝑥7 = 𝑇�
9:∈< .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	such	a	Y exist?

𝑋	 = 8,6,7,5,3,10,9 , 𝑇 = 15



𝑋	 = 11,6,5,1,7,13,12 , 𝑇 = 15

Subset	Sum

We	are	given	a	set	of	𝑛 positive	integers	𝑋 = 	 𝑥.,	𝑥0,	 … , 𝑥2 and	a	
target	integer	value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋 such	that	the	

sum	of	the	elements	∑ 𝑥7 = 𝑇�
9:∈< .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	such	a	Y exist?



Subset	Sum	Solution	and	Example
We	are	given	a	set	of	𝑛 positive	integers	𝑋 = 	 𝑥.,	𝑥0,	 … , 𝑥2 and	a	target	integer	value	𝑇.	We	want	

to	find	a	subset	Y ⊆ 𝑋 such	that	the	sum	of	the	elements	∑ 𝑥7 = 𝑇�
9:∈< .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	such	a	Y exist?

SubsetSum(X[1..n], i, T):
If T = 0:

return True
ElseIf T < 0 or i = 0:

return False
Else:

with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

𝑋	 = 1,2,3 , 𝑇 = 3
SubsetSum 𝑋, 𝑖 = 3, 𝑇 = 3



Subset	Sum	Example
We	are	given	a	set	of	𝑛 positive	integers	𝑋 = 	 𝑥.,	𝑥0,	 … , 𝑥2 and	a	target	integer	value	𝑇.	We	want	

to	find	a	subset	Y ⊆ 𝑋 such	that	the	sum	of	the	elements	∑ 𝑥7 = 𝑇�
9:∈< .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	such	a	Y exist?

SubsetSum(X[1..n], i, T):
If T = 0:

return True
ElseIf T < 0 or i = 0:

return False
Else:

with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

𝑋	 = 1,2,3 , 𝑇 = 3
SubsetSum 𝑋, 𝑖 = 3, 𝑇 = 3

𝑋, 2, 3 − 3 = 0 𝑋, 2, 3

with without



Subset	Sum	Example
We	are	given	a	set	of	𝑛 positive	integers	𝑋 = 	 𝑥.,	𝑥0,	 … , 𝑥2 and	a	target	integer	value	𝑇.	We	want	

to	find	a	subset	Y ⊆ 𝑋 such	that	the	sum	of	the	elements	∑ 𝑥7 = 𝑇�
9:∈< .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	such	a	Y exist?

SubsetSum(X[1..n], i, T):
If T = 0:

return True
ElseIf T < 0 or i = 0:

return False
Else:

with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

𝑋	 = 1,2,3 , 𝑇 = 3
SubsetSum 𝑋, 𝑖 = 3, 𝑇 = 3

𝑋, 2, 3 − 3 = 0 𝑋, 2, 3

𝑋, 1, 3 − 2 = 1 𝑋, 1, 3

with without

with without



Subset	Sum	Example
We	are	given	a	set	of	𝑛 positive	integers	𝑋 = 	 𝑥.,	𝑥0,	 … , 𝑥2 and	a	target	integer	value	𝑇.	We	want	

to	find	a	subset	Y ⊆ 𝑋 such	that	the	sum	of	the	elements	∑ 𝑥7 = 𝑇�
9:∈< .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	such	a	Y exist?

SubsetSum(X[1..n], i, T):
If T = 0:

return True
ElseIf T < 0 or i = 0:

return False
Else:

with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

𝑋	 = 1,2,3 , 𝑇 = 3
SubsetSum 𝑋, 𝑖 = 3, 𝑇 = 3

𝑋, 2, 3 − 3 = 0 𝑋, 2, 3

𝑋, 1, 3 − 2 = 1 𝑋, 1, 3

𝑋, 0, 1 − 1 = 0 𝑋, 0, 1 𝑋, 0, 2 𝑋, 0, 3

with without

with without with without

with without



Subset	Sum	Correctness

SubsetSum(X[1..n], i, T):
If T = 0:

return True
ElseIf T < 0 or i = 0:

return False
Else:

with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

Trivially	works	for	base	cases:
• T	=	0	à Always	true	(empty	subset)
• T	<	0	à Always	false	(our	integers	are	>	0)
• n	=	0	(X	is	empty	)à Always	false	(no	subset	can	

add	to	any	T)

Otherwise,	if	there	is	a	subset	that	sums	to	T,	it	
either	contains	X[i]	or	it	doesn’t.	Both	of	these	
possibilities	are	evaluated	by	the	recursion	fairy.	



Subset	Sum	Running	Time

SubsetSum(X[1..n], i, T):
If T = 0:

return True
ElseIf T < 0 or i = 0:

return False
Else:

with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

Recurrence	Relation?



Subset	Sum	Running	Time

SubsetSum(X[1..n], i, T):
If T = 0:

return True
ElseIf T < 0 or i = 0:

return False
Else:

with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

𝑇 𝑛 = 2𝑇 𝑛 − 1 + 𝑂 1 ≤ 𝑂(22)

Recurrence	Relation?



Subset	Sum	Running	Time

SubsetSum(X[1..n], i, T):
If T = 0:

return True
ElseIf T < 0 or i = 0:

return False
Else:

with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

𝑇 𝑛 = 2𝑇 𝑛 − 1 + 𝑂 1 ≤ 𝑂(22)

(You	can	show	with	a	recursion	tree)

Recurrence	Relation?



Subset	Sum	Wrap

• Our	algorithm	tells	us	whether	
such	a	subset	exists,	but	does	not	
return	the	subset
• Relatively	straightforward	
modifications	to	return	the	subset

• Our	algorithm	is	not	scalable
• We	will	see	later	this	week	how	to	
use	dynamic	programming to	speed	
it	up	by	solving	subproblems in	a	
smart	order	and	storing	the	solutions	
for	reuse

SubsetSum(X[1..n], i, T):
If T = 0:

return True
ElseIf T < 0 or i = 0:

return False
Else:

with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

𝑇 𝑛 = 2𝑇 𝑛 − 1 + 𝑂 1 ≤ 𝑂(22)



Text	Segmentation

Problem:	Given	an	array	𝐴[1. . 𝑛] representing	a	sequence	of	𝑛
characters	without	spaces,	determine	whether	the	array	can	be	
subdivided	into	a		sequence	of	words.



Text	Segmentation

Problem:	Given	an	array	𝐴[1. . 𝑛] representing	a	sequence	of	𝑛
characters	without	spaces,	determine	whether	the	array	can	be	
subdivided	into	a		sequence	of	words.

Assume	we	are	given	a	function	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗).	This	function	assumes	𝐴
is	a	global	variable	and	returns	True	if	the	subarray	𝐴[𝑖. . 𝑗] is	a	word	in	
the	language	of	the	sequence.	
• This	allows	us	to	avoid	passing	subarrays	as	arguments	to	functions.



Text	Segmentation	Example
t h e b r o w n f o x i s q u i c k𝐴

The	sentence:	“the	brown	fox	is	quick”

Where	are	there	potential	problems	for	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗)?



Text	Segmentation	Example
t h e b r o w n f o x i s q u i c k𝐴

The	sentence:	“the	brown	fox	is	quick”

Where	are	there	potential	problems	for	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗)?

he



Text	Segmentation	Example
t h e b r o w n f o x i s q u i c k𝐴

The	sentence:	“the	brown	fox	is	quick”

Where	are	there	potential	problems	for	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗)?

brow



Text	Segmentation	Example
t h e b r o w n f o x i s q u i c k𝐴

The	sentence:	“the	brown	fox	is	quick”

Where	are	there	potential	problems	for	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗)?

row



Text	Segmentation	Example
t h e b r o w n f o x i s q u i c k𝐴

The	sentence:	“the	brown	fox	is	quick”

Where	are	there	potential	problems	for	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗)?

own



Text	Segmentation	Example
t h e b r o w n f o x i s q u i c k𝐴

The	sentence:	“the	brown	fox	is	quick”

Where	are	there	potential	problems	for	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗)?

brown



Text	Segmentation	Example
t h e b r o w n f o x i s q u i c k𝐴

The	sentence:	“the	brown	fox	is	quick”

Where	are	there	potential	problems	for	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗)?

Recall	the	pattern	from	earlier:
• Sequence	of	decisions	made	1	at	a	time

• “Does	𝐴[𝑖. . j] belong	in	my	sequence	of	words?”

brown



Text	Segmentation	Example
t h e b r o w n f o x i s q u i c k𝐴

The	sentence:	“the	brown	fox	is	quick”

Where	are	there	potential	problems	for	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗)?

Recall	the	pattern	from	earlier:
• Sequence	of	decisions	made	1	at	a	time

• “Does	𝐴[𝑖. . j] belong	in	my	sequence	of	words?”
• Recursive	brute	force	

• Check	every	possible	word,	even	if	there	might	
be	a	way	to	prune!

brown



Text	Segmentation	Solution

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

t h e b r o w n f o x i s q u i c k

𝑖 = 0



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0

j = 0𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 1
𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):

If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2
𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):

If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2

j = 2

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2 j = 3

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2 j = 5

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2 j = 5

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 6)

What	is	going	to	happen?

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2 j = 5

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 6)

What	is	going	to	happen?

“nfoxisquick”	is	not	a	word,	so:
• 𝑖 never	becomes	greater	than	𝑛

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2 j = 5

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 6)

What	is	going	to	happen?

“nfoxisquick”	is	not	a	word,	so:
• 𝑖 never	becomes	greater	than	𝑛
• 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) is	never	true

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2 j = 5

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 6)

What	is	going	to	happen?

“nfoxisquick”	is	not	a	word,	so:
• 𝑖 never	becomes	greater	than	𝑛
• 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) is	never	true
• 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒 𝐴 1. . 𝑛 , 𝑗 + 1 = 6 returns	False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2 j = 5

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 6)

What	is	going	to	happen?

“nfoxisquick”	is	not	a	word,	so:
• 𝑖 never	becomes	greater	than	𝑛
• 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) is	never	true
• 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒 𝐴 1. . 𝑛 , 𝑗 + 1 = 6 returns	False
• We	go	back	to	the	loop!



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

What	is	going	to	happen?

“nfoxisquick”	is	not	a	word,	so:
• 𝑖 never	becomes	greater	than	𝑛
• 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) is	never	true
• 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒 𝐴 1. . 𝑛 , 𝑗 + 1 = 6 returns	False
• We	go	back	to	the	loop!

j = 6

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

What	is	going	to	happen?

“nfoxisquick”	is	not	a	word,	so:
• 𝑖 never	becomes	greater	than	𝑛
• 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) is	never	true
• 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒 𝐴 1. . 𝑛 , 𝑗 + 1 = 6 returns	False
• We	go	back	to	the	loop!

j = 6

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 7)



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2 j = 6

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)

Eventually….

…

t h e b r o w n f o x i s q u i c k

𝑖 = 14 j = 18

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 7)



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2 j = 6

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)

Eventually….

…

t h e b r o w n f o x i s q u i c k

𝑖 = 14 j = 18

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 7)

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 19)



Text	Segmentation	Solution

t h e b r o w n f o x i s q u i c k

𝑖 = 0 j = 2

t h e b r o w n f o x i s q u i c k

𝑖 = 2 j = 6

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 2)

Eventually….

…

t h e b r o w n f o x i s q u i c k

𝑖 = 14 j = 18

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 7)

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1 = 19)

19 > 𝑛,	returns	True!



Text	Segmentation	Correctness

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

Base	case:	𝑛 = 1.	Either:	
• 𝐼𝑠𝑊𝑜𝑟𝑑(1,1) returns	False,	in	which	case	the	loop	ends	

and	the	algorithm	returns	False,	or	
• 𝐼𝑠𝑊𝑜𝑟𝑑(1,1) returns	True,	in	which	case	
𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 2) returns	True



Text	Segmentation	Correctness

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

Base	case:	𝑛 = 1.	Either:	
• 𝐼𝑠𝑊𝑜𝑟𝑑(1,1) returns	False,	in	which	case	the	loop	ends	

and	the	algorithm	returns	False,	or	
• 𝐼𝑠𝑊𝑜𝑟𝑑(1,1) returns	True,	in	which	case	
𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 2) returns	True

Assuming	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) is	correct	and	𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑘], 1)
is	correct	for	1 ≤ 𝑘 ≤ 𝑛,	we	immediately	see	that	it	must	be	
correct	for	𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛 + 1], 1),	since	this	runs	the	
algorithm	on	inputs	of	maximum	size	𝑛 − 1 < 𝑛.



Text	Segmentation	Analysis

Since	we	do	not	know	the	running	time	of	
𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗),	we	will	instead	express	the	running	
time	as	the	number	of	calls	we	make	to	it.

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑂(𝑛)
2a.

7bc



Text	Segmentation	Analysis

Since	we	do	not	know	the	running	time	of	
𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗),	we	will	instead	express	the	running	
time	as	the	number	of	calls	we	make	to	it.

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

Calling	𝐼𝑠𝑊𝑜𝑟𝑑
for	all	𝑛 items

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑂(𝑛)
2a.

7bc



Text	Segmentation	Analysis

Since	we	do	not	know	the	running	time	of	
𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗),	we	will	instead	express	the	running	
time	as	the	number	of	calls	we	make	to	it.

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

Calling	𝐼𝑠𝑊𝑜𝑟𝑑
for	all	𝑛 itemsWorst	case:	calling	

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒 on	every	
subsequence

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑂(𝑛)
2a.

7bc



Text	Segmentation	Analysis

Since	we	do	not	know	the	running	time	of	
𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗),	we	will	instead	express	the	running	
time	as	the	number	of	calls	we	make	to	it.

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑂(𝑛)
2a.

7bc

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑐𝑛
2a.

7bc



Text	Segmentation	Analysis

Since	we	do	not	know	the	running	time	of	
𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗),	we	will	instead	express	the	running	
time	as	the	number	of	calls	we	make	to	it.

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

𝑇 𝑛 − 1 ≤ `𝑇 𝑖 + 𝑐(𝑛 − 1)
2a.

7bc

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑂(𝑛)
2a.

7bc

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑐𝑛
2a.

7bc



Text	Segmentation	Analysis

Since	we	do	not	know	the	running	time	of	
𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗),	we	will	instead	express	the	running	
time	as	the	number	of	calls	we	make	to	it.

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False
𝑇 𝑛 − 	𝑇 𝑛 − 1 ≤ 𝑇 𝑛 − 1 + 𝑐

𝑇 𝑛 − 1 ≤ `𝑇 𝑖 + 𝑐(𝑛 − 1)
2a0

7bc

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑂(𝑛)
2a.

7bc

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑐𝑛
2a.

7bc



Text	Segmentation	Analysis

Since	we	do	not	know	the	running	time	of	
𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗),	we	will	instead	express	the	running	
time	as	the	number	of	calls	we	make	to	it.

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False
𝑇 𝑛 − 	𝑇 𝑛 − 1 ≤ 𝑇 𝑛 − 1 + 𝑐

𝑇 𝑛 = 	𝑇 𝑛 − 1 + 𝑇 𝑛 − 1 + 𝑐	 = 2𝑇 𝑛 − 1 + 𝑐

𝑇 𝑛 − 1 ≤ `𝑇 𝑖 + 𝑐(𝑛 − 1)
2a.

7bc

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑂(𝑛)
2a.

7bc

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑐𝑛
2a.

7bc



Text	Segmentation	Analysis

Since	we	do	not	know	the	running	time	of	
𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗),	we	will	instead	express	the	running	
time	as	the	number	of	calls	we	make	to	it.

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑖 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False
𝑇 𝑛 − 	𝑇 𝑛 − 1 ≤ 𝑇 𝑛 − 1 + 𝑐

𝑇 𝑛 = 	𝑇 𝑛 − 1 + 𝑇 𝑛 − 1 + 𝑐	 = 2𝑇 𝑛 − 1 + 𝑐

𝑇 𝑛 − 1 ≤ `𝑇 𝑖 + 𝑐(𝑛 − 1)
2a.

7bc

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑂(𝑛)
2a.

7bc

𝑇 𝑛 ≤ `𝑇 𝑖 + 𝑐𝑛
2a.

7bc

𝑻(𝒏) = 𝟐𝑻 𝒏 − 𝟏 + 𝒄	 ≤ 𝑶(𝟐𝒏)
(You	can	show	with	a	recursion	tree)



Wrap	up

Homework	2	is	out	- read	through	it	ASAP!
• Problem	4	is	not	solvable	yet,	the	first	3	are	after	this	lecture.

Next	time:
• Dynamic	Programming

Reading	Assignment:	Erickson	Chapter	3	(for	real	this	time)


