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bit.ly/cs3000syllabus



Business

Homework	2	is	out,	due	Tuesday	May	19	11:59PM	Boston	time	on	
Canvas

We	are	working	on	grading	homework	1,	will	share	solutions	once	the	
grades	are	complete

It	is	totally	fine	to	look	ahead	in	the	slides,	but	please	give	others	a	
minute	to	try	to	answer	questions	I	ask	before	writing	what	you	saw	
later



Today

Dynamic	Programming
Fibonacci	Numbers
Text	Segmentation	Revisited



Fibonacci	Numbers

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	



Fibonacci	Numbers:	Recursion

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:

return 0
ElseIf 𝑛 = 1:

return 1
Else:

return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 1 + 1

First,	if	we	squint	and	assume	𝑛 → ∞ we	might	see



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 1 + 1
𝑇 𝑛 = 2𝑇 𝑛 − 1 + 1 ≤ 2 ⋅ 2"

≤ 𝑂(2"C+)

First,	if	we	squint	and	assume	𝑛 → ∞ we	might	see



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1

𝑇 2 = 𝑇 1 + 𝑇 0 + 1 = 3



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1

𝑇 2 = 𝑇 1 + 𝑇 0 + 1 = 3 𝐹𝑖𝑏 3 = 𝐹𝑖𝑏 2 + 𝐹𝑖𝑏 1 = 2



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1

𝑇 2 = 𝑇 1 + 𝑇 0 + 1 = 3 𝐹𝑖𝑏 3 = 𝐹𝑖𝑏 2 + 𝐹𝑖𝑏 1 = 2

𝑇 3 = 𝑇 2 + 𝑇 1 + 1 = 5 𝐹𝑖𝑏 4 = 𝐹𝑖𝑏 3 + 𝐹𝑖𝑏 2 = 3



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1

𝑇 2 = 𝑇 1 + 𝑇 0 + 1 = 3 𝐹𝑖𝑏 3 = 𝐹𝑖𝑏 2 + 𝐹𝑖𝑏 1 = 2

𝑇 3 = 𝑇 2 + 𝑇 1 + 1 = 5

𝑇 4 = 𝑇 3 + 𝑇 2 + 1 = 9

𝐹𝑖𝑏 4 = 𝐹𝑖𝑏 3 + 𝐹𝑖𝑏 2 = 3

𝐹𝑖𝑏 5 = 𝐹𝑖𝑏 4 + 𝐹𝑖𝑏 3 = 5



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1

𝑇 2 = 𝑇 1 + 𝑇 0 + 1 = 3

𝑇 3 = 𝑇 2 + 𝑇 1 + 1 = 5

𝑇 4 = 𝑇 3 + 𝑇 2 + 1 = 9

𝐹𝑖𝑏 3 = 𝐹𝑖𝑏 2 + 𝐹𝑖𝑏 1 = 2

𝐹𝑖𝑏 4 = 𝐹𝑖𝑏 3 + 𝐹𝑖𝑏 2 = 3

𝐹𝑖𝑏 5 = 𝐹𝑖𝑏 4 + 𝐹𝑖𝑏 3 = 5

𝑇 4 = 2𝐹𝑖𝑏 4 + 1 − 1 = 9

𝑇 2 = 2𝐹𝑖𝑏 2 + 1 − 1 = 3

𝑇 3 = 2𝐹𝑖𝑏 3 + 1 − 1 = 5



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1

𝑇 2 = 𝑇 1 + 𝑇 0 + 1 = 3

𝑇 3 = 𝑇 2 + 𝑇 1 + 1 = 5

𝑇 4 = 𝑇 3 + 𝑇 2 + 1 = 9

𝐹𝑖𝑏 3 = 𝐹𝑖𝑏 2 + 𝐹𝑖𝑏 1 = 2

𝐹𝑖𝑏 4 = 𝐹𝑖𝑏 3 + 𝐹𝑖𝑏 2 = 3

𝐹𝑖𝑏 5 = 𝐹𝑖𝑏 4 + 𝐹𝑖𝑏 3 = 5

𝑇 4 = 2𝐹𝑖𝑏 4 + 1 − 1 = 9

𝑇 2 = 2𝐹𝑖𝑏 2 + 1 − 1 = 3

𝑇 3 = 2𝐹𝑖𝑏 3 + 1 − 1 = 5

𝑇 𝑛 = 2𝑓"C+ − 1



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1

𝑇 2 = 𝑇 1 + 𝑇 0 + 1 = 3

𝑇 3 = 𝑇 2 + 𝑇 1 + 1 = 5

𝑇 4 = 𝑇 3 + 𝑇 2 + 1 = 9

𝐹𝑖𝑏 3 = 𝐹𝑖𝑏 2 + 𝐹𝑖𝑏 1 = 2

𝐹𝑖𝑏 4 = 𝐹𝑖𝑏 3 + 𝐹𝑖𝑏 2 = 3

𝐹𝑖𝑏 5 = 𝐹𝑖𝑏 4 + 𝐹𝑖𝑏 3 = 5

𝑇 4 = 2𝐹𝑖𝑏 4 + 1 − 1 = 9

𝑇 2 = 2𝐹𝑖𝑏 2 + 1 − 1 = 3

𝑇 3 = 2𝐹𝑖𝑏 3 + 1 − 1 = 5

𝑇 𝑛 = 2𝑓"C+ − 1 → 2𝑇 𝑛 + 1 ≤ 𝑂(2"C+)



Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1

𝑇 2 = 𝑇 1 + 𝑇 0 + 1 = 3

𝑇 3 = 𝑇 2 + 𝑇 1 + 1 = 5

𝑇 4 = 𝑇 3 + 𝑇 2 + 1 = 9

𝐹𝑖𝑏 3 = 𝐹𝑖𝑏 2 + 𝐹𝑖𝑏 1 = 2

𝐹𝑖𝑏 4 = 𝐹𝑖𝑏 3 + 𝐹𝑖𝑏 2 = 3

𝐹𝑖𝑏 5 = 𝐹𝑖𝑏 4 + 𝐹𝑖𝑏 3 = 5

𝑇 4 = 2𝐹𝑖𝑏 4 + 1 − 1 = 9

𝑇 2 = 2𝐹𝑖𝑏 2 + 1 − 1 = 3

𝑇 3 = 2𝐹𝑖𝑏 3 + 1 − 1 = 5

𝑇 𝑛 = 2𝑓"C+ − 1 → 2𝑇 𝑛 + 1 ≤ 𝑂(2"C+)

Exponential	in	𝑛
is	very slow		for	
such	a	simple	
function!



Memoization

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)



Memo(r)ization
𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

• 𝐹𝑖𝑏(𝑛) is	very	slow	because	we	are	
recomputing the	same	values	over	and	over	
again!



Memo(r)ization
𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

• 𝐹𝑖𝑏(𝑛) is	very	slow	because	we	are	
recomputing the	same	values	over	and	over	
again!

• What	if	instead	we	save	each	value	we	compute	
so	that	we	can	access	it	in	constant	time?



Memo(r)ization
𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

𝑀𝑒𝑚𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
If 𝐹[𝑛]	is undefined:
F n = 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 1) 	+ 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 2)

return 𝐹[𝑛]

• 𝐹𝑖𝑏(𝑛) is	very	slow	because	we	are	
recomputing the	same	values	over	and	over	
again!

• What	if	instead	we	save	each	value	we	compute	
so	that	we	can	access	it	in	constant	time?

• Keep	a	global	table	𝐹[𝑖] that	stores	results	and	
use	stored	results	where	possible



Memo(r)ization
𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

• 𝐹𝑖𝑏(𝑛) is	very	slow	because	we	are	
recomputing the	same	values	over	and	over	
again!

• What	if	instead	we	save	each	value	we	compute	
so	that	we	can	access	it	in	constant	time?

• Keep	a	global	table	𝐹[𝑖] that	stores	results	and	
use	stored	results	where	possible

• How	is	the	table	filled?	And	what	implication	
does	this	have	for	the	runtime?

𝑀𝑒𝑚𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
If 𝐹[𝑛]	is undefined:
F n = 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 1) 	+ 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 2)

return 𝐹[𝑛]



Memo(r)ization

𝑀𝑒𝑚𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
If 𝐹[𝑛]	is undefined:
F n = 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 1) 	+ 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 2)

return 𝐹[𝑛]



Memo(r)ization

𝑀𝑒𝑚𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
If 𝐹[𝑛]	is undefined:
F n = 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 1) 	+ 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 2)

return 𝐹[𝑛]

How		many		additions?	



There	has	to	be	a	better	way!	

Enter:	Dynamic	programming



Dynamic	Programming
𝑀𝑒𝑚𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:

return 0
ElseIf 𝑛 = 1:

return 1
Else:

If 𝐹[𝑛]	is undefined:
F n = 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 1) 	+ 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 2)

return 𝐹[𝑛]

• The	execution	order	and	runtime	of	
𝑀𝑒𝑚𝐹𝑖𝑏(𝑛) implies	a	simpler	way	to	compute	
Fibonacci	numbers



Dynamic	Programming
𝑀𝑒𝑚𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:

return 0
ElseIf 𝑛 = 1:

return 1
Else:

If 𝐹[𝑛]	is undefined:
F n = 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 1) 	+ 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 2)

return 𝐹[𝑛]

• The	execution	order	and	runtime	of	
𝑀𝑒𝑚𝐹𝑖𝑏(𝑛) implies	a	simpler	way	to	compute	
Fibonacci	numbers

• What	if	we	just	like….filled	𝐹 explicitly?

𝐼𝑡𝑒𝑟𝐹𝑖𝑏 𝑛 :
𝐹 0 ← 	0
𝐹 1 ← 	1
for 𝑖 from 2	. . 𝑛

F i ← 𝐹[𝑖 − 1] + 𝐹[𝑖 − 2]	
return 𝐹[𝑛]



Dynamic	Programming
𝑀𝑒𝑚𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:

return 0
ElseIf 𝑛 = 1:

return 1
Else:

If 𝐹[𝑛]	is undefined:
F n = 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 1) 	+ 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 2)

return 𝐹[𝑛]

𝐼𝑡𝑒𝑟𝐹𝑖𝑏 𝑛 :
𝐹 0 ← 	0
𝐹 1 ← 	1
for 𝑖 from 2	. . 𝑛

F i ← 𝐹[𝑖 − 1] + 𝐹[𝑖 − 2]	
return 𝐹[𝑛]

• The	execution	order	and	runtime	of	
𝑀𝑒𝑚𝐹𝑖𝑏(𝑛) implies	a	simpler	way	to	compute	
Fibonacci	numbers

• What	if	we	just	like….filled	𝐹 explicitly?

• Now	the	execution	is	clearly	𝑂(𝑛)!

• Note:	We	could	save	memory	here.	How?



Dynamic	Programming

• Formalized	by	Richard	Bellman	at	RAND	in	the	‘50s
• Bellman	apparently	named	it	“dynamic	programming”	to	obscure	his	research	
from	his	bosses.
• Programming	does	not	refer	to	computers,	but	scheduling:	for	example	
designing	the	“program”	of	a	performance	or	event,	or	filling	a	TV	schedule

• General	pattern:	Recursion	without	repetition
• Store	solutions	of	intermediate	problems	to	be	reused	later!
• Finding	a	correct	recurrence	that	can	be	memoized is	vital

• If		your	recurrence	is	wrong	or	can’t	be	memoized,	you	will	go	in	circles!



Dynamic	Programming	Process

There	are	3	main	steps	to	developing	dynamic	programming	solutions:
1. Find	the	right	recurrence
• Formalize	the	problem	carefully
• Find	a	recursive	solution	(could	be	pseudocode	or	just	a	relation)



Dynamic	Programming	Process

There	are	3	main	steps	to	developing	dynamic	programming	solutions:
1. Find	the	right	recurrence
• Formalize	the	problem	carefully
• Find	a	recursive	solution	(could	be	pseudocode	or	just	a	relation)

2. Build	solutions	to	the	recurrence	from	the	bottom	up
• What	are	the	subproblems that	need	solving?
• What	data	structure	can	I	use	to	access	them	correctly	and	quickly?
• Which	subproblems depend	on	each	other?
• What	order	should	the	subproblems be	executed	in?



Dynamic	Programming	Process

There	are	3	main	steps	to	developing	dynamic	programming	solutions:
1. Find	the	right	recurrence
• Formalize	the	problem	carefully
• Find	a	recursive	solution	(could	be	pseudocode	or	just	a	relation)

2. Build	solutions	to	the	recurrence	from	the	bottom	up
• What	are	the	subproblems that	need	solving?
• What	data	structure	can	I	use	to	access	them	correctly	and	quickly?
• Which	subproblems depend	on	each	other?
• What	order	should	the	subproblems be	executed	in?

3. Prove	it!



Text	Segmentation	Revisited

𝑇(𝑛) = 2𝑇 𝑛 − 1 + 𝑐	 ≤ 𝑂(2")

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑗 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

Problem:	Given	an	array	𝐴[1. . 𝑛]
representing	a	sequence	of	𝑛 characters	
without	spaces,	determine	whether	the	
array	can	be	subdivided	into	a		sequence	
of	words.

Assume	we	are	given	a	function	
𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗).	This	function	assumes	𝐴 is	a	
global	variable	and	returns	True	if	the	
subarray	𝐴[𝑖. . 𝑗] is	a	word	in	the	language	
of	the	sequence.	

• This	allows	us	to	avoid	passing	subarrays	as	
arguments	to	functions.



Text	Segmentation	Revisited

𝑇(𝑛) = 2𝑇 𝑛 − 1 + 𝑐	 ≤ 𝑂(2")

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑗 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

Where	are	we	wasting	computation?

For	a	fixed	𝐴[1. . 𝑛],	how	many	ways	can	
we	call	𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴, 𝑖)?	

𝑂(𝑛)

For	any	two	indices	1 ≤ i ≤ 𝑗 ≤ 𝑛,	how	
many	ways	can	we	call	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗)?

𝑂(𝑛-)

We	are	spending	exponential	time	
computing	polynomial	amounts	of	stuff!
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𝑂(𝑛-)

We	are	spending	exponential	time	
computing	polynomial	amounts	of	stuff!
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For	a	fixed	𝐴[1. . 𝑛],	how	many	ways	can	
we	call	𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴, 𝑖)?	

𝑂(𝑛)

For	all	indices	1 ≤ i ≤ 𝑗 ≤ 𝑛,	how	many	
times	can	we	call	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗)?

𝑂(𝑛-)

We	are	spending	exponential	time	
computing	polynomial	amounts	of	stuff!



Text	Segmentation	Revisited

𝑇(𝑛) = 2𝑇 𝑛 − 1 + 𝑐	 ≤ 𝑂(2")

𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑖):
If 𝑖	 > 	𝑛:
return True

Else:
𝑗 ← 𝑖
for 𝑗 to 𝑛:
If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗):
If 𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛], 𝑗 + 1):

return True

return False

Where	are	we	wasting	computation?

For	a	fixed	𝐴[1. . 𝑛],	how	many	ways	can	
we	call	𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴, 𝑖)?	

𝑂(𝑛)

For	all	indices	1 ≤ i ≤ 𝑗 ≤ 𝑛,	how	many	
times	can	we	call	𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗)?

𝑂(𝑛-)

We	are	spending	exponential	time	
computing	polynomial	amounts	of	stuff!



Dynamic	Programming	Approach

𝐹𝑎𝑠𝑡𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛]):
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑛 + 1 ← 𝑇𝑟𝑢𝑒

for 𝑖 from 𝑛 to 1:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝐹𝑎𝑙𝑠𝑒
for 𝑗 from 𝑖 to 𝑛:

If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) AND 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒[𝑗 + 1]:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝑇𝑟𝑢𝑒

return 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 1



Dynamic	Programming	Approach
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for 𝑗 from 𝑖 to 𝑛:
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t h e b r o w n f o x i s q u i c k

𝑖 = 18

F F F F F F F F F F F F F F F F F F T

𝑗 = 18

𝑗 + 1 = 19

𝑛 = 18

𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒

t h e b r o w n f o x i s q u i c k
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for 𝑗 from 𝑖 to 𝑛:

If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) AND 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒[𝑗 + 1]:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝑇𝑟𝑢𝑒

return 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 1

t h e b r o w n f o x i s q u i c k

𝑖 = 14

F F F F F F F F F F F F F T F F F F T

𝑗 = 18

𝑗 + 1 = 19

𝑛 = 18

𝑖 = 14

𝐼𝑠𝑊𝑜𝑟𝑑(14,18) is	𝑇𝑟𝑢𝑒!

𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒

t h e b r o w n f o x i s q u i c k



Dynamic	Programming	Approach

𝐹𝑎𝑠𝑡𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛]):
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑛 + 1 ← 𝑇𝑟𝑢𝑒

for 𝑖 from 𝑛 to 1:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝐹𝑎𝑙𝑠𝑒
for 𝑗 from 𝑖 to 𝑛:

If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) AND 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒[𝑗 + 1]:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝑇𝑟𝑢𝑒

return 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 1

t h e b r o w n f o x i s q u i c k

𝑖 = 12

F F F F F F F F F F F T F T F F F F T

𝑗 = 13

𝑗 + 1 = 14

𝑛 = 18

𝑖 = 12

𝐼𝑠𝑊𝑜𝑟𝑑(12,13) is	𝑇𝑟𝑢𝑒!

𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒

t h e b r o w n f o x i s q u i c k



Dynamic	Programming	Approach

𝐹𝑎𝑠𝑡𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛]):
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑛 + 1 ← 𝑇𝑟𝑢𝑒

for 𝑖 from 𝑛 to 1:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝐹𝑎𝑙𝑠𝑒
for 𝑗 from 𝑖 to 𝑛:

If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) AND 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒[𝑗 + 1]:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝑇𝑟𝑢𝑒

return 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 1

t h e b r o w n f o x i s q u i c k

𝑖 = 10

F F F F F F F F F T F T F T F F F F T

𝑗 = 11

𝑗 + 1 = 12

𝑛 = 18

𝑖 = 10

𝐼𝑠𝑊𝑜𝑟𝑑(10,11) is	𝑇𝑟𝑢𝑒!

𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒

t h e b r o w n f o x i s q u i c k



Dynamic	Programming	Approach

𝐹𝑎𝑠𝑡𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛]):
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑛 + 1 ← 𝑇𝑟𝑢𝑒

for 𝑖 from 𝑛 to 1:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝐹𝑎𝑙𝑠𝑒
for 𝑗 from 𝑖 to 𝑛:

If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) AND 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒[𝑗 + 1]:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝑇𝑟𝑢𝑒

return 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 1

t h e b r o w n f o x i s q u i c k

𝑖 = 9

F F F F F F F F T T F T F T F F F F T

𝑗 = 11

𝑛 = 18

𝑖 = 9

𝐼𝑠𝑊𝑜𝑟𝑑(9,11) is	𝑇𝑟𝑢𝑒!

𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒

t h e b r o w n f o x i s q u i c k

𝑗 + 1 = 12



Dynamic	Programming	Approach

𝐹𝑎𝑠𝑡𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛]):
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑛 + 1 ← 𝑇𝑟𝑢𝑒

for 𝑖 from 𝑛 to 1:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝐹𝑎𝑙𝑠𝑒
for 𝑗 from 𝑖 to 𝑛:

If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) AND 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒[𝑗 + 1]:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝑇𝑟𝑢𝑒

return 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 1

t h e b r o w n f o x i s q u i c k

𝑖 = 1

F F F T F T F F T T F T F T F F F F T

𝑗 = 3

𝑗 + 1 = 4

𝑛 = 18

𝑖 = 1

𝐼𝑠𝑊𝑜𝑟𝑑(1,3) is	𝑇𝑟𝑢𝑒!

𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒

t h e b r o w n f o x i s q u i c k



Dynamic	Programming	Approach

𝐹𝑎𝑠𝑡𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛]):
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑛 + 1 ← 𝑇𝑟𝑢𝑒

for 𝑖 from 𝑛 to 1:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝐹𝑎𝑙𝑠𝑒
for 𝑗 from 𝑖 to 𝑛:

If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) AND 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒[𝑗 + 1]:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝑇𝑟𝑢𝑒

return 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 1

t h e b r o w n f o x i s q u i c k

T F F T F T F F T T F T F T F F F F T

𝑛 = 18

𝑖 = 1

𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒

t h e b r o w n f o x i s q u i c k

𝑗 + 1 = 4

𝑖 = 1 𝑗 = 3

𝐼𝑠𝑊𝑜𝑟𝑑(1,3) is	𝑇𝑟𝑢𝑒!

If	T propagates	all	the	way	back	to	𝑖 = 1,	we	have	a	segmentation!



FastSplittable Analysis

𝑇(𝑛) = 2𝑇 𝑛 − 1 + 𝑐	 ≤ 𝑂(2")
𝐹𝑎𝑠𝑡𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒(𝐴[1. . 𝑛]):
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑛 + 1 ← 𝑇𝑟𝑢𝑒

for 𝑖 from 𝑛 to 1:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝐹𝑎𝑙𝑠𝑒
for 𝑗 from 𝑖 to 𝑛:

If 𝐼𝑠𝑊𝑜𝑟𝑑(𝑖, 𝑗) AND 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒[𝑗 + 1]:
𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 𝑖 ← 𝑇𝑟𝑢𝑒

return 𝑆𝑝𝑙𝑖𝑡𝑇𝑎𝑏𝑙𝑒 1

If	T propagates	all	the	way	back	to	𝑖 = 1,	we	
have	a	segmentation!

Previously	we	had	the	recurrence:

I	argue	we	can	just	read	off	the	
running	time	of	𝐹𝑎𝑠𝑡𝑆𝑝𝑙𝑖𝑡𝑡𝑎𝑏𝑙𝑒

from	the	pseudocode

T F F T F T F F T T F T F T F F F F T

t h e b r o w n f o x i s q u i c k



Wrap	up

Work	on	homework	2!	Due	Tuesday	night	at	midnight.

Next	time:
• Subset	Sum	revisited
• Edit	Distance
• Knapsack	problem

No	new	reading	assignment	(Chapter	3	Erickson)


