Lecture 8: More Dynamic
Programming

Tim LaRock
larock.t@northeastern.edu
bit.ly/cs3000syllabus

Business

Keep working on homework 2!
* Ask questions early if you are stuck!

Take home midterm 1 will be next Wednesday through Friday (more at
the end)

Today

Brief correction on yesterday’s lecture
Dynamic Programming

Subset Sum

Edit Distance

Correct the record: 2 mistakes

(:
0 lf n=_0 What does the recurrence relation T(n) look like?
fay 1 ifn=1 T0)=1,T(1) =1
\fn—l + fn—2 otherwise T(n) =T(h—1) +T(n—2)+1

First, if we squint and assume n — oo we might see

TmM)=Tn—-1)+Tn—-1)+1

Fib(n): Tn)=2T(n—-1)+1<2-2™
If n=0: S0(2n+1)
return 0
ElseIf n=1:
return 1
Else:

return Fib(n—1) + Fib(n — 2)

Correct the record: 2 mistakes

(0 ifn=0
fas 1 ifn=1
\fn—l + fr_> otherwise

Fib(n):
If n=0:
return 0
ElseIf n=1:
return 1
Else:
return Fib(n—1) + Fib(n — 2)

What does the recurrence relation T(n) look like?

T0)=1T(1) =1
Tn)=Tn—-1)+Tn-2)+1

First, if we squint and assume n — oo we might see

TmM)=Tn—-1)+Tn—-1)+1
Tn)=2Th—-1)+1<2-.2™
S0(2n+1)

\

This is wrong!
| was not careful
and made an
error!

Correct the record: 2 mistakes

(

0 if n=_0 What does the recurrence relation T(n) look like?
fay 1 ifn=1 T0)=1,T(1) =1
\fn—l + fn-2 Otherwise T(n) =T(n—1)+T(n—2) + 1

First, if we squint and assume n — oo we might see

TmM)=Tn—-1)+Tn—-1)+1
Fib(n): Tn)=2T(n—-1)+1<

If n=0:

return 0
ElseIf n=1:

return 1
Else:

return Fib(n—1) + Fib(n —2)

Correct the record: 2 mistakes

(

0 if n=_0 What does the recurrence relation T(n) look like?
fay 1 ifn=1 T0)=1,T(1) =1
\fn—l + fn-2 Otherwise T(n) =T(n—1)+T(n—2) + 1

T2)=T()+T0)+1=3
T3)=TR2)+T(A)+1=5

Fib(3) = Fib(2) + Fib(1) = 2
Fib(4) = Fib(3) + Fib(2) = 3

i T4) =T@3)+T(2)+1=9 | Fib(S) = Fib(4) + Fib(3) = 5
n=0:
return 0 .
ElseIf n=1: T(2)=2Fib(2+1)—1=3
EEiEEn T(3) =2Fib(3+1)—1=5
Else: .
return Fib(n—1) + Fib(n — 2) T(4)=2Fib(4+1)—-1=9

T(n) =2fp41—1

Correct the record: 2 mistakes

(

0 ifn=20
a1 ifn=1
\fn—l + fr_> otherwise

Fib(n):
If n=0:
return 0
ElseIf n=1:
return 1
Else:
return Fib(n—1) + Fib(n — 2)

What does the recurrence relation T(n) look like?

T0)=1T(1) =1
Tn)=Tn—-1)+Tn-2)+1

T2)=T()+T0)+1=3 Fib(3) = Fib(2) + Fib(1) = 2
T3)=TR2)+T(A)+1=5 Fib(4) = Fib(3) + Fib(2) =3

T4) =T3)+TQ2)+1=9 | Fib(5) = Fib(4) + Fib(3) =5

T(2) = 2Fib(2+1) —1 = 3
T(3) =2Fib(3+1)—1=5 This is wrong!

T(4) = 2Fib(4 +1) =1 =9 /
T(n) = 2fpe1 —1 - 2T(n+ 1) <0(2™1)

Correct the record: 2 mistakes

(

0 if n=_0 What does the recurrence relation T(n) look like?
fay 1 ifn=1 T0)=1,T(1) =1
\fn—l + fn-2 Otherwise T(n) =T(n—1)+T(n—2) + 1

T2)=T()+T0)+1=3
T3)=TR2)+T(A)+1=5

Fib(3) = Fib(2) + Fib(1) = 2
Fib(4) = Fib(3) + Fib(2) = 3

FibI(;l):) T(4)=TQR)+T2)+1=9 Fib(5) = Fib(4) + Fib(3) =5
n=0:
return 0
T(2) =2Fib(2+1)—1=3
Elself n=1: The important point (2) ib()
return 1 is that just counting T(3) = 2Fib(3+1)—1=5
Else: to f, would be _ o _

T(n) =2fp41—1

Today: Dynamic Programming Subset Sum

Subset Sum

T(n)=2T(n—-1)+0(1) <0(2")

SubsetSum(X[1l..n], i, T):

I£f T = 0:
return True

ElseIf T < 0 or i = O:
return False

Else:
with <« SubsetSum(X,
wout « SubsetSum(X,
return with OR wout

i-1, T — X[i])

i-1,

T)

We are given a set of n positive integers

X = {xl, Xy ...,xn} and a target integer

value T. We want to find a subset Y € X
such that the sum of the elements

inEY Xi = T.

Our problem: For a given T and X, does
such a 'Y exist?

Subset Sum

We are given a set of n positive integers

X = {xl, Xy ...,xn} and a target integer

value T. We want to find a subset Y € X
such that the sum of the elements

Tn) =2Tn—1)+0(1) <0(2") Yxerxi =T.
Our problem: For a given T and X, does
SubsetSum(X[1l..n], i, T): such a Y exist?
If T = 0:
return True
Elself T < 0 or 1 = 0: * We know our algorithm is
g LoouEn False correct, but it is very slow
se.:
with « SubsetSum(X, i-1, T — X[i]) * Let’s reformulate it with
wout ¢« SubsetSum(X, i-1, T) dynamlc programming

return with OR wout

Formulating Subset Sum for Dynamic Programming

SubsetSum(X[1l..n], i, T):

If T = 0:
return True

ElseIf T < 0 or 1 = 0:
return False

Else:
with <« SubsetSum(X, i-1, T — X[1])
wout <« SubsetSum(X, i-1, T)
return with OR wout

Formulating Subset Sum for Dynamic Programming

What are our
subproblems?

SubsetSum(X[1l..n], i, T):

If T = 0:
return True

ElseIf T < 0 or 1 = 0:
return False

Else:
with <« SubsetSum(X, i-1, T — X[1])
wout <« SubsetSum(X, i-1, T)
return with OR wout

Formulating Subset Sum for Dynamic Programming

What data structure
can we use for
memoization?

What are our
subproblems?

SubsetSum(X[1l..n], i, T):

If T = 0:
return True

ElseIf T < 0 or 1 = 0:
return False

Else:
with <« SubsetSum(X, i-1, T — X[1])
wout <« SubsetSum(X, i-1, T)
return with OR wout

Formulating Subset Sum for Dynamic Programming

What data structure Which subproblems

What are our can we use for depend on each other,
subproblems? and what evaluation

memoization? ..
order does this imply?

SubsetSum(X[1l..n], i, T):

If T = 0:
return True

ElseIf T < 0 or 1 = 0:
return False

Else:
with <« SubsetSum(X, i-1, T — X[1])
wout <« SubsetSum(X, i-1, T)
return with OR wout

Formulating Subset Sum for Dynamic Programming

Which subproblems

What data structure What are the
What are our depend on each other,)
can we use for) space/time
subproblems? . .. and what evaluation .
memoization? requirements?

order does this imply?

SubsetSum(X[1l..n], i, T):

If T = 0:
return True

ElseIf T < 0 or 1 = 0:
return False

Else:
with <« SubsetSum(X, i-1, T — X[1])
wout <« SubsetSum(X, i-1, T)
return with OR wout

Formulating Subset Sum for Dynamic Programming

What are our
subproblems?

SubsetSum(X[1l..n], i, T):

If T = 0:
return True

ElseIf T < 0 or 1 = 0:
return False

Else:
with <« SubsetSum(X,
wout « SubsetSum(X,
return with OR wout

What data structure Which subproblems What are the
depend on each other,

can we use for) space/time
and what evaluation pace/

memoization? .. requirements?
order does this imply? g

What are our
subproblems?

Define a boolean function SubSum(i, t) that returns True if
and only if there is a subset of X[i..n] sums to t.

i-1, T — X[i])

Formulating Subset Sum for Dynamic Programming

What are our
subproblems?

SubsetSum(X[1l..n], i, T):

If T = 0:
return True

ElseIf T < 0 or 1 = 0:
return False

Else:
with <« SubsetSum(X,
wout « SubsetSum(X,
return with OR wout

What data structure Which subproblems What are the
depend on each other,

can we use for) space/time
and what evaluation pace/

memoization? .. requirements?
order does this imply? g

What are our
subproblems?

Define a boolean function SubSum(i, t) that returns True if
and only if there is a subset of X[i..n] sums to t.

At an arbitrary iteration1 <i<n+1landt <T

i-1, T — X[i])

Formulating Subset Sum for Dynamic Programming

What are our
subproblems?

SubsetSum(X[1l..n], i, T):

If T = 0:
return True

ElseIf T < 0 or 1 = 0:
return False

Else:
with <« SubsetSum(X,
wout « SubsetSum(X,
return with OR wout

i-1,
i-1,

T —
T)

What data structure Which subproblems What are the
depend on each other,

can we use for) space/time
and what evaluation pace/

memoization? .. requirements?
order does this imply? g

What are our
subproblems?

Define a boolean function SubSum(i, t) that returns True if
and only if there is a subset of X[i..n] sums to t.

At an arbitrary iteration1 <i<n+1landt <T

/

X[i]) SubSum(i, t) = <

Formulating Subset Sum for Dynamic Programming

What are our
subproblems?

SubsetSum(X[1l..n], i, T):

If T = 0:
return True

ElseIf T < 0 or 1 = 0:
return False

Else:
with <« SubsetSum(X,
wout « SubsetSum(X,
return with OR wout

i-1,
i-1,

T —
T)

What data structure Which subproblems What are the
depend on each other,

can we use for) space/time
and what evaluation pace/

memoization? .. requirements?
order does this imply? g

What are our
subproblems?

Define a boolean function SubSum(i, t) that returns True if
and only if there is a subset of X[i..n] sums to t.

At an arbitrary iteration1 <i<n+1landt <T

([True ift=0

X[i]) SubSum(i, t) = <

Formulating Subset Sum for Dynamic Programming

What are our
subproblems?

SubsetSum(X[1l..n], i, T):

If T = 0:
return True

ElseIf T < 0 or 1 = 0:
return False

Else:
with <« SubsetSum(X,
wout « SubsetSum(X,
return with OR wout

i-1,
i-1,

T —
T)

What data structure Which subproblems What are the
depend on each other,

can we use for) space/time
and what evaluation pace/

memoization? .. requirements?
order does this imply? g

What are our
subproblems?

Define a boolean function SubSum(i, t) that returns True if
and only if there is a subset of X[i..n] sums to t.

At an arbitrary iteration1 <i<n+1landt <T

[True ift=0
False ifi>n
. SubSum(i,t) = <
X[i]) (&6)

Formulating Subset Sum for Dynamic Programming

Which subproblems

Wh r r What are th
What are our at data structure depend on each other, ata e_ the
can we use for) space/time
subproblems? . .. and what evaluation .
memoization? .. requirements?
order does this imply?
What are our
subproblems?
SubsetSum(X[1l..n], 1, T): Define a boolean function SubSum(i, t) that returns True if
If T = 0: and only if there is a subset of X[i..n] sums to t.

return True
ElseIf T < 0 or 1 = 0:
return False ([True ift=0
Else: SubSum(i, t) = | False ifi>n
with < SubsetSum(X, i-1, T — X[i]) ' SubSum(i + 1,t) if t < X[i]
wout <« SubsetSum(X, i-1, T) \
return with OR wout

At an arbitrary iteration1 <i<n+1landt <T

Formulating Subset Sum for Dynamic Programming

Which subproblems

Wh r r What are th
What are our at data structure depend on each other, ata e_ the
can we use for) space/time
subproblems? . .. and what evaluation .
memoization? .. requirements?
order does this imply?
What are our
subproblems?
SubsetSum(X[1l..n], 1, T): Define a boolean function SubSum(i, t) that returns True if
If T = 0: and only if there is a subset of X[i..n] sums to t.

return True

. . . ci< <
FlseIf T< 0 or i = O: At an arbitraryiteration1 <i<n+1landt<T

return False ([True ift=0
Else: , False ifi>n

with « SubsetSum(X, i-1, T — X[i]) >“bSum(b0) =19 supsum(i+1,¢) if t < X[i]

wout ¢« SubsetSum(X, i-1, T) LSubSum(i +1,t) vSubSum(i+ 1,t + X[i]) otherwise

return with OR wout

Formulating Subset Sum for Dynamic Programming

What data structure Which subproblems

What are the
What are our depend on each other,)
can we use for) space/time
subproblems? . .. and what evaluation .
, memoization? . . 5 requirements?
At an arbitrary iteration1 <i<n+1landt <T order does this imply?
True ift=0
SS(i ¢) = False ifi>n
8 =1 subsum(i + 1,t) if t < X[i]

SubSum(i + 1,t) VSubSum(i + 1,t — X[i]) otherwise

What data structure

can we use for
SubsetSum(X[1l..n], 1, T): memoization?
If T = 0:
return True
ElseIf T < 0 or 1 = 0:
return False
Else:
with <« SubsetSum(X,
wout « SubsetSum(X,
return with OR wout

— X[1])

T
=

H 3

Formulating Subset Sum for Dynamic Programming

What are our
subproblems?
At an arbitraryiteration1 <i<n+1landt<T
ift=0
False ifi>n
SubSum(i + 1,t) if t <XJi]
SubSum(i + 1,t) VSubSum(i + 1,t — X[i]) otherwise

True

SS(i, t) =

SubsetSum(X[1l..n],
If T = 0:
return True
ElseIf T < 0 or 1 = 0:
return False
Else:
with <« SubsetSum(X,
wout « SubsetSum(X,
return with OR wout

i, T):

=
T)

i-1,
i-1,

Which subproblems
depend on each other,
and what evaluation
order does this imply?

What data structure
can we use for
memoization?

What are the
space/time
requirements?

What data structure
can we use for
memoization?

We can fill a 2 dimensional array with the
following dimensions:
S[1..n+1,0..T] = SubSum(i, t)
S5(1,0) S(1,1) S(1,2) S(1,3)
5(2,0) S(2,1) S(2,2) S(2,3)
5(3,0) S(3,1) S(3,2) S(3,3)

S(4,0) S(4,1) S(4.2) S(4,3)
T

X[1i])

Formulating Subset Sum for Dynamic Programming

Which subproblems

What data structure What are the
What are our depend on each other,)
can we use for) space/time
subproblems? . .. and what evaluation .
memoization? .. requirements?
At an arbitrary iteration1 <i<n+1landt <T . . _ order does this imply?
, We can fill a 2 dimensional array
True ift=0 . .) .
False ifi>n with the following dimensions:
S50 =9 subsum(i +1,1) if t <X[i] S[1..n+1,0..T] = SubSum(i, t)

SubSum(i + 1,t) VSubSum(i + 1,t — X[i]) otherwise

SubsetSum(X[1l..n], i, T):
If T = 0:
return True
ElseIf T < 0 or 1 = 0:

return False S(1,0) 5(1,1) S(1,2) S$(1,3)
Else: S(2,0) S(21) $(2.2) S(23)

with <« SubsetSum(X, %—l, T — X[1]) n sE0)l sl seol s

wout « SubsetSum(X, 1-1, T)

return with OR wout 5(4,0) S(4,1) 5(4,2) S(4,3)

T

Formulating Subset Sum for Dynamic Programming

Which subproblems

What data structure What are the
What are our depend on each other,)
can we use for) space/time
subproblems? . .. and what evaluation .
memoization? .. requirements?
At an arbitrary iteration1 <i<n+1landt <T . . _ order does this imply?
, We can fill a 2 dimensional array
True ift=0 . .) .
False ifi>n with the following dimensions:
S50 =9 subsum(i +1,1) if t <X[i] S[1..n+1,0..T] = SubSum(i, t)

SubSum(i + 1,t) VSubSum(i + 1,t — X[i]) otherwise

SubSum(i, t) can depend on
SubSum(i + 1,t) and
SubSum(i + 1,t — X[i]). So
we can start at the bottom of
the table and work up.

SubsetSum(X[1l..n], i, T):
If T = 0:
return True
ElseIf T < 0 or 1 = 0:

return False S(1,0) 5(1,1) S(1,2) S$(1,3)
Else: S(2,0) S(21) $(2.2) S(23)

with <« SubsetSum(X, %—l, T — X[1]) n sE0)l sl seol s

wout « SubsetSum(X, 1-1, T)

return with OR wout 5(4,0) S(4,1) 5(4,2) S(4,3)

T

Formulating Subset Sum for Dynamic Programming

Which subproblems

What are our What data structure depend on each other, What are_ the
can we use for) space/time
subproblems? memoization? and what evaluation requirements?
At an arbitrary iteration1 <i<n+landt<T . . o order does this imply? q)
True ife=0 We can fill a 2 dimensional array
False ifi>n with the following dimensions:
SS(i,t) = SubSum(i + 1,t) if t < X[i] 5[1 .n+1,0.. T] = SubSum(i, t)
SubSum(i + 1,t) VSubSum(i + 1,t — X[i]) otherwise
SubSum(i, t) can depend on
_ SubSum(i + 1,t) and
It T = 0: we can start at the bottom of
return True . the table and work up. End
ElseIf T < 0 or 1 = O: N
return False 5(1,0) $(1,1) $(1,2) S(1,3)
Else: 5(2,0) S(2,1) S(2,2) S(2,3)
with <« SubsetSum(X, i-1, T — X[1]) n $(3,0) S3,1) S(3,2) S(3,3)
wout <« SubsetSum(X, i-1, T) ’ ’ ' ’
return with OR wout S(4,0) S41) S42) S(4,3)

r Start

Formulating Subset Sum for Dynamic Programming

Which subproblems
depend on each other,
and what evaluation
order does this imply?

What data structure
can we use for
memoization?

What are the
space/time
requirements?

What are our
subproblems?

At an arbitrary iteration1 <i<n+1landt <T . _ _
We can fill a 2 dimensional array

T ift=0 -
_ F::;See ll];f >n with the following dimensions: guzgum(l., t)lcan dep()jend on
SS(8) =1 subsum(i + 1,0) if t < X[i] S[1..n +1,0..T] = SubSum(i, t) ubSum(i +1,¢) an

SubSum(i + 1,t — X[i]). So
we can start at the bottom of
the table and work up.

SubSum(i + 1,t) VSubSum(i + 1,t — X[i]) otherwise

SubsetSum(X[1l..n], i, T):
If T = 0:
return True

What are the space/time

ElseIf T < 0 or i = 0:
return False

requirements?

S(1,0) S(1,1) S(1,2) S(1,3)

. Space
Else: | | 5(2,0) 5(2,1) 5(2,2) S(2,3) requirement
with < SubsetSum(X, i-1, T — X[i]) S(3,0) S(3,1) S(3,2) S(3,3) is O(nT)

wout « SubsetSum(X, i-1,
return with OR wout

T)

S(4,0) S(4,1) S(4,2) S(4,3)
T

Formulating Subset Sum for Dynamic Programming

What are our
subproblems?

At an arbitraryiteration1 <i<n+1landt<T

True ift=0
. False ifi>n
SS(8) =1 subsum(i + 1,0) if t < X[i]

SubSum(i + 1,t) VSubSum(i + 1,t — X[i]) otherwise

SubsetSum(X[1l..n], i, T):
If T = 0:
return True
ElseIf T < 0 or 1 = 0:
return False
Else:

with < SubsetSum(X, i-1, T — X[i])

wout « SubsetSum(X, i-1,
return with OR wout

T)

What data structure
can we use for
memoization?

We can fill a 2 dimensional array

with the following dimensions:
S[1..n+1,0..T] = SubSum(i, t)

Which subproblems
depend on each other,
and what evaluation
order does this imply?

SubSum(i, t) can depend on
SubSum(i + 1,t) and
SubSum(i + 1,t — X[i]). So
we can start at the bottom of
the table and work up.

What are the space/time
requirements?
S(1,0) S(1,1) S(1,2) S(1,3)
S(2,0) S(2,1) S(2,2) S(2,3)
S(3,0) S(3,1) S(3,2) S(3,3)

S(4,0) S(4,1) S(4,2) S(4,3)
T

What are the
space/time
requirements?

Space: O(nT)

Formulating Subset Sum for Dynamic Programming

What data structure
can we use for
memoization?

What are our
subproblems?
At an arbitrary iteration1 <i<n+1landt <T . _ _
, We can fill a 2 dimensional array
True ift=0 . .) .
False ifi>n with the following dimensions:
SubSum(i + 1,t) if t <X[i] S[1..n+1,0..T] = SubSum(i, t)
SubSum(i + 1,t) VSubSum(i + 1,t — X[i]) otherwise

SS(i, t) =

SubsetSum(X[1l..n], i, T):

If T = 0:
return True

ElseIf T < 0 or 1 = 0:
return False

Else:
with <« SubsetSum(X, i-1, T — X[1]) n
wout <« SubsetSum(X, i-1, T)
return with OR wout

Which subproblems
depend on each other,
and what evaluation
order does this imply?

SubSum(i, t) can depend on Space: O(nT)
SubSum(i + 1,t) and Time: O(nT)
SubSum(i + 1,t — X[i]). So

we can start at the bottom of

the table and work up.

What are the
space/time
requirements?

What are the space/time

requirements? Using our
evaluation order,

5(1,0) S(L,1D) S(L,2) S(L3) we can fill the
S(2,0) S(2,1) S(2,2) S(2,3) tablein constant

time per update,
SB0) SB1) SB2) SB3) T ihe time

S(4,0) S(41) $S(4,2) S(4,3) complexity is also
T O(nT)

Formulating Subset Sum for Dynamic Programming

Which subproblems
depend on each other,
and what evaluation
order does this imply?

What are the
space/time
requirements?

What data structure
can we use for
memoization?

What are our
subproblems?

At an arbitrary iteration1 <i<n+1landt <T . _ _
We can fill a 2 dimensional array

T ift=0 ,)
_ F::zlsee ll];cf —n with the following dimensions: guzgum(l., t)lcan dep()jend on _?_PaC("-‘-OO(?T)
SSWE) =1 subsum(i + 1,0) if t < X[i] S[1..n +1,0..T] = SubSum(i, t) ubSum(i +1,¢) an ime: O(nT)

SubSum(i + 1,t — X[i]). So
we can start at the bottom of
the table and work up.

SubSum(i + 1,t) VSubSum(i + 1,t — X[i]) otherwise

FastSubsetSum(X[1l..n], T):
S[n+1,0] « True
for t<1 to T:
S[n+ 1,t] « False
for i< n down to 1:
Sli, 0] « True
for t« 1 to X[i]—1:
Sli,t] « S[i + 1,¢t]
for t « X|[i] to T:
Sli,t] « S[i+1,¢] V S[i +1,t — X[i]]
return S[1,T]

Formulating Subset Sum for Dynamic Programming

What data structure Which subproblems What are the
What are our can we use for depend on each other, space/time
subproblems? . .. and what evaluation .
memoization? .. requirements?
At an arbitrary iteration1 <i<n+1landt <T W fll a2 di nal order does this imply?
True ift=0 @ can fill @ 2 dimensiona .arra.y SubSum(i, t) can depend on Space: O(nT)
_ False ifi>n with the following dimensions: SubSum(i + 1,t) and Time: 0(nT)
SS(8) =1 subsum(i + 1,0) if t < X[i] S[1..n +1,0..T] = SubSum(i, t) umit + L, t)and € Lin
SubSum(i + 1,t) VSubSum(i + 1,t — X[i]) otherwise SubSum(l +1t- X[l])' S0

we can start at the bottom of

the table and work up.
FastSubsetSum(X[1l..n], T):

S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i< n down to 1:
S[i, 0] « True Let’s see an example
for t«< 1 to X[i]—1:
Sli,t] « S[i + 1,¢t]
for t « X|[i] to T:
Sli,t] « S[i+1,¢] V S[i +1,t — X[i]]
return S[1,T]

Dynamic Programming Subset Sum Example

FastSubsetSum(X[l..n], T):
S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i<n down to 1:
S[i,0] « True
for t<1 to X[i]—1:
Sli,t] « S[i +1,t]
for t « X|i] to T:
Sli,t] «S[li+1,t] V S[i+1,t—X][i]]
return S[1,T]

X =[1,23],T =3

S(1,0) S(1,1) S(1,2) S(1,3)
S(2,0) S(2,1) S(2,2) S(2,3)
S(3,0) S(3,1) S(3,2) S(3,3)
S(4,0) S(4,1) S(4,2) S(4,3)

Dynamic Programming Subset Sum Example

FastSubsetSum(X[l..n], T):
S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i<n down to 1:
S[i,0] « True
for t<1 to X[i]—1:
Sli,t] « S[i +1,t]
for t « X|i] to T:
Sli,t] «S[li+1,t] V S[i+1,t—X][i]]
return S[1,T]

X =[1,23],T =3

S(1,0) S(1,1) S(1,2) S(1,3)

S(2,0) S(2,1) S(2,2) S(2,3)

S(3,0) S(3,1) S(3,2) S(3,3)
T F F F

Dynamic Programming Subset Sum Example

FastSubsetSum(X[l..n], T):
S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i<n down to 1:
S[i,0] « True
for t<1 to X[i]—1:
Sli,t] « S[i +1,t]
for t « X|i] to T:
Sli,t] «S[li+1,t] V S[i+1,t—X][i]]
return S[1,T]

X =[1,23],T =3

S(1,0) S(1,1) S(1,2) S(1,3)

S(2,0) S(2,1) S(2,2) S(2,3)

X[i1=3 T SGB1) S32) S3,3)
T F F F

Dynamic Programming Subset Sum Example

FastSubsetSum(X[l..n], T):
S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i<n down to 1:
S[i,0] « True
for t<1 to X[i]—1:
Sli,t] « S[i +1,t]
for t « X|i] to T:
Sli,t] «S[li+1,t] V S[i+1,t—X][i]]
return S[1,T]

X =[1,23],T =3

S(1,0) S(1,1) S(1,2) S(1,3)

S(2,0) S(2,1) S(2,2) S(2,3)

X[1=3 T F F S33)
T F F F

Dynamic Programming Subset Sum Example

FastSubsetSum(X[l..n], T):
S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i<n down to 1:
S[i,0] « True
for t<1 to X[i]—1:
Sli,t] « S[i +1,t]
for t « X|i] to T:
Sli,t] «S[li+1,t] V S[i+1,t—X][i]]
return S[1,T]

X =[1,23],T =3

S(1,0) S(1,1) S(1,2) S(1,3)
S(2,0) S(2,1) S(2,2) S(2,3)
X[1=3 T F F
T F F F

Dynamic Programming Subset Sum Example

FastSubsetSum(X[l..n], T):
S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i<n down to 1:
S[i,0] « True
for t<1 to X[i]—1:
Sli,t] « S[i +1,t]
for t « X|i] to T:
Sli,t] «S[li+1,t] V S[i+1,t—X][i]]
return S[1,T]

X =[1,23],T =3

S(1,0) S(1,1) S(1,2) S(1,3)
X[i1=2 S(2,0) S(2,1) S(2,2) S(2,3)
T F F
T F F F

Dynamic Programming Subset Sum Example

FastSubsetSum(X[l..n], T):
S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i<n down to 1:
S[i,0] « True
for t<1 to X[i]—1:
Sli,t] « S[i +1,t]
for t « X|i] to T:
Sli,t] «S[li+1,t] V S[i+1,t—X][i]]
return S[1,T]

X =[1,23],T =3

S(1,0) S(1,1) S(1,2) S(1,3)

X[il=2 T F S(22) S(2,3)
T F F
T F F F

Dynamic Programming Subset Sum Example

FastSubsetSum(X[l..n], T):
S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i<n down to 1:
S[i,0] « True
for t<1 to X[i]—1:
Sli,t] « S[i +1,t]
for t « X|i] to T:
Sli,t] «S[li+1,t] V S[i+1,t—X][i]]
return S[1,T]

X =[1,23],T =3

S(1,0) S(1,1) S(1,2) S(1,3)

X[i]=2 T F S(2,3)
T F F
T F F F

Dynamic Programming Subset Sum Example

X =[1,23],T =3
FastSubsetSum(X[l..n], T):

S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i<n down to 1: 5(1,0) $(1,1) S(1,2) S(1,3)
S[i, 0] « True X[i]=2 T F
for t«1 to X[i]—1: T F c
Sli,t] « S[i +1,t]
for t « X[i] to T: T F F F
Sli,t] «S[li+1,t] V S[i+1,t—X][i]]
return S[1,T]

Dynamic Programming Subset Sum Example

FastSubsetSum(X[l..n], T):
S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i<n down to 1:
S[i,0] « True
for t<1 to X[i]—1:
Sli,t] « S[i +1,t]
for t « X|i] to T:
Sli,t] «S[li+1,t] V S[i+1,t—X][i]]
return S[1,T]

X[i] =1

X =[1,23],T =3

S(1,1) S(1,2) S(1,3)

Dynamic Programming Subset Sum Example

X =[1,23],T =3
FastSubsetSum(X[l..n], T):

S[n+1,0] « True
for t«<1 to T:
Sn+ 1,t] « False
for ie<n down to 1: X[i]=1 S-Sy S(1,3)

-
S[i,0] « True T F
T
T

for t<1 to X[i]—1:
Sli,t] « S[i +1,t]
for t « X|i] to T:
Sli,t] «S[i+1,t]VS[i+1t—
return S[1,T]

Dynamic Programming Subset Sum Example

FastSubsetSum(X[l..n], T):
S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i<n down to 1:
S[i,0] « True
for t<1 to X[i]—1:
Sli,t] « S[i +1,t]
for t « X|i] to T:
Sli,t] «S[li+1,t] V S[i+1,t—X][i]]
return S[1,T]

X =[1,23],T =3

X[l=1 T S(1,1) S(1,2) S(1,3)
T F
T F F
T F F F

Since S[1,3] checks S[2, 3] which is
True, we know we have a solution!

Dynamic Programming Subset Sum Example

FastSubsetSum(X[l..n], T):
S[n+1,0] « True
for t<1 to T:
Sn+ 1,t] « False
for i<n down to 1:
S[i,0] « True
for t<1 to X[i]—1:
Sli,t] « S[i +1,t]
for t « X|i] to T:
Sli,t] «S[li+1,t] V S[i+1,t—X][i]]
return S[1,T]

=[1,2,3],T = 3

X[i] =1

- 4 4 -
m M T —

Since S[1,3] checks S[2, 3] which is
True, we know we have a solution!

Subset Sum Wrap

What are our
subproblems?
At an arbitraryiteration1 <i<n+1landt<T

True ift=0
. False ifi>n
SS(8) =1 subsum(i + 1,0) if t < X[i]

SubSum(i + 1,t) VSubSum(i + 1,t — X[i]) otherwise

FastSubsetSum(X[l..n], T):

S[n+1,0] « True

for t«<1 to T:
S[n+ 1,t] « False

for i<n down to 1:
S[i,0] « True
for t«<1 to X[i]—1:

Sli,t] « S[i +1,t]

for t « X|i] to T:

Sli,t] <« S[i+1,t] V S[i+1,t— X[i]]

return S[1,T]

What data structure
can we use for
memoization?

We can fill a 2 dimensional array]
with the following dimensions: SubSum(i, t) can depend on

S[1..n+1,0..T] = SubSum(i,t) SubSum(i+1,¢)and

Which subproblems
depend on each other,
and what evaluation
order does this imply?

SubSum(i + 1,t — X[i]). So
we can start at the bottom of
the table and work up.

|s FastSubsetSum always faster
than the recursive version?

What are the
space/time
requirements?

Space: O(nT)
Time: O(nT)

Subset Sum Wrap

What are our
subproblems?
At an arbitraryiteration1 <i<n+1landt<T

True ift=0
. False ifi>n
SS(8) =1 subsum(i + 1,0) if t < X[i]

SubSum(i + 1,t) VSubSum(i + 1,t — X[i]) otherwise

FastSubsetSum(X[l..n], T):

S[n+1,0] « True

for t«<1 to T:
S[n+ 1,t] « False

for i<n down to 1:
S[i,0] « True
for t«<1 to X[i]—1:

Sli,t] « S[i +1,t]

for t « X|i] to T:

Which subproblems
depend on each other,
and what evaluation
order does this imply?

What data structure
can we use for
memoization?

We can fill a 2 dimensional array

with the following dimensions: SubSum(l:, t) can depend on SF’ace: 0(nT)
S[1..n+ 1,0..T] = SubSum(i, t) SubSum(L. +1,t) and. Time: O(nT)
SubSum(i + 1,t — X[i]). So
we can start at the bottom of
the table and work up.

What are the
space/time
requirements?

|s FastSubsetSum always faster
than the recursive version?

No! If T > 2", the recursive
version is actually faster!

Sli,t] <« S[i+1,t] V S[i+1,t— X[i]]

return S[1,T]

Edit Distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string
into the other.

Edit Distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string
into the other.

FOOD — MOOD — MOND — MONED — MONEY

Edit Distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string
into the other.

FOOD — MOOD — MOND — MONED — MONEY

Substitution

Edit Distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string
into the other.

FOOD — MOOD — MON D — MONED — MONEY

T

Substitution Substitution

Edit Distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string
into the other.

Insertion

FOOD — MOOD — MON D — MONED — MONEY

T

Substitution Substitution

Edit Distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string
into the other.

Insertion

FOOD — MOOD — MON D — MONED — MONEY

1 T

Substitution Substitution Substitution

Edit Distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string
into the other.

- 11
o R o
A

Alternative: Align the strings and count the differences

Edit Distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string
into the other.

Alternative: Align the strings and count the differences

Edit Distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string
into the other.

EditDistance(food, money) = 4

Alternative: Align the strings and count the differences

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string
into the other.

o (R
i

e 11

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string
into the other.

F OO D
M ONEY

What should our subproblems be?

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string

into the other.

F O O D

M ONEYY

What should our subproblems be?

* Imagine that we have this alighment
representation for the optimal edit distance

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string

into the other.
F OO
M ONE

What should our subproblems be?

* Imagine that we have this alighment
representation for the optimal edit distance

¢ Remove the last column

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string

into the other.
F OO
M ONE

What should our subproblems be?

* Imagine that we have this alighment
representation for the optimal edit distance

¢ Remove the last column

 What must be true of the remaining prefixes?

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string

into the other.
F OO
M ONE

What should our subproblems be?
* Imagine that we have this alighment
representation for the optimal edit distance
¢ Remove the last column
 What must be true of the remaining prefixes?
* They must also be optimall!

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string

into the other.

For any two input strings A[1..n] and

1 2 3 4 B[lm], let
F O O
Edit(i,j)
M O N
1 2 3 45 denote the edit distance between
What should our subproblems be? prefixes A[1..1] and B[1..j]. We

.)) need to compute Edit(n, m).
Imagine that we have this alignment Pu it(n,m)

representation for the optimal edit distance

Remove the last column

What must be true of the remaining prefixes?
* They must also be optimall!

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of
insertions, deletions, and substitutions that will transform one string

into the other. For any two input strings A[1..n] and
N 1 2 3 4 B[1..m], let
Decisions here do not F 0O
depend on what was . Edit(i,)
already computed! M O N
1 2 3 45 denote the edit distance between
What should our subproblems be? prefixes A[1..i] and B[1..]. We

.)) need to compute Edit(n, m).
* Imagine that we have this alignment Pu it(n,m)

representation for the optimal edit distance
¢ Remove the last column
 What must be true of the remaining prefixes?
* They must also be optimall!

Formulating a recursive edit distance

Each call to Edit(i, j)makes a
decision about how to align the last
column in the substring.
There are three possibilities:

> >
I
= 0
-
— —
-~ I

o2 ST <

Formulating a recursive edit distance

Each call to Edit(i, j)makes a
decision about how to align the last
column in the substring.
There are three possibilities:

> >
. .
= 50
- -
— —
-~ I

o2 ST <

. Arbitrary Case
1. Insertion

ALGOR
ALTR J U

Edit(i,j —1) + 1

2. Deletion

3. Substitution

Formulating a recursive edit distance

Each call to Edit(i, j)makes a
decision about how to align the last
column in the substring.
There are three possibilities:

> >
. .
= 50
- -
— —
-~ I

o2 ST <

. Arbitrary Case
1. Insertion

ALGOR
U

ALTR Edit(i,j—1)+1

2. Deletion

ALGO I R Edit(i —1,j) + 1

ALTRU

3. Substitution

Formulating a recursive edit distance

Each call to Edit(i, j)makes a
decision about how to align the last
column in the substring.
There are three possibilities:

> >
. .
= 50
- -
— —
-~ I

o2 ST <

. Arbitrary Case
1. Insertion

ALGOR
U

ALTR Edit(i,j—1)+1

2. Deletion

ALGO I R Edit(i —1,j) + 1

ALTRU

3. Substitution

Edit(i —1,j — 1) + 1, if A[i] # B[j]
ALGO | R ALGO I R

At I et 1B Edit(i — 1,j — 1), if A[i] = B[j]

Formulating a recursive edit distance

Each call to Edit(i, j)makes a
decision about how to align the last
column in the substring.
There are three possibilities:

> >
r
A A
—

— —

- I
3 2

. Arbitrary Case Base Case
1. Insertion
ALGOR Edit(i i —1) + 1 Edit(0.1) = i to'i i ATO. i
ALTR U it(i,j—1) + it(0,j) = jtoinsert gapsin A[0..J]
2. Deletion
ALGO I R Edit(i—1,j) +1 Edit(i,0) = i to delete characters from B[0..{]
ALTRU

3. Substituti
ubstitution Edit(i —1,j — 1) + 1, if A[i] # B[j]
ALGO | R ALGO I R

At I et 1B Edit(i — 1,j — 1), if A[i] = B[j]

Formulating a recursive edit distance

(i if =0
Each call to Edit(i, j)makes a o J T B Eh it =10
decision about how to align the last Edit(i,) = . l.t(l_’] B .) " _
column in the substring. min Edit(i—1,j) +1 otherwise
There are three possibilities: \ Edit(i—1,j—1) +[A[i] # B[j]]
. Arbitrary Case Base Case
1. Insertion
ALGOR P . . L . .
ALTR I U Edit(i,j—1)+1 Edit(0,j) = j toinsert gaps in A[0.. /]
2. Deletion
ALGO IR Edit(i—1,j) +1 Edit(i,0) = i to delete characters from B[0..{]
ALTRU
3. Substitution

ALGO
ALTR

R
U

ALGO
ALT

R
R

Edit(i—1,j — 1) + 1, if A[i] # B[j]
Edit(i —1,j — 1), if A[i] = B[j]

Next Time

We will formulate a dynamic programming algorithm for Edit

Distanc

Edit(i, j) = 4

e and discuss the Knapsack Problem.

(i if j=0

j ifi=0
Edit(i,j—1)+1
min Edit(i—1,j)+1 otherwise
\

Edit(i—1,j—1)+[Ali] # B[j]]

Wrap up

No new reading assignment (still chapter 3 of Erickson)
* If you didn’t follow our Edit Distance discussion, read 3.7 before Monday!

Work on homework 2! Ask questions on Piazza.

Midterm next Weds 8PM — Fri SPM.

* Topics will be everything we have done so far:

* Asymptotic analysis and Divide and Conquer (including recursion, backtracking, and dynamic
programming)

* If there are things you have struggled with, strategize sooner rather than later about
how you will review them before Wednesday!

Enjoy your weekend!

