
Lecture	8:	More	Dynamic	
Programming

Tim	LaRock
larock.t@northeastern.edu

bit.ly/cs3000syllabus

 



Business

Keep	working	on	homework	2!
• Ask	questions	early	if	you	are	stuck!

Take	home	midterm	1	will	be	next	Wednesday	through	Friday	(more	at	
the	end)



Today

Brief	correction	on	yesterday’s	lecture
Dynamic	Programming

Subset	Sum
Edit	Distance



Correct	the	record:	2	mistakes

!" #
0																							&!	' = 0
1																							&!	' = 1

!"*+ + !"*-								./ℎ123&41	

5&6('):
If ' = 0:
return 0

ElseIf ' = 1:
return 1

Else:
return 5&6(' − 1) 	+ 	5&6(' − 2)

What	does	the	recurrence	relation	<(') look	like?	

< ' = < ' − 1 + < ' − 2 + 1
< 0 = 1, < 1 = 1

< ' = < ' − 1 + < ' − 1 + 1
< ' = 2< ' − 1 + 1 ≤ 2 ⋅ 2"

≤ @(2"A+)

First,	if	we	squint	and	assume	' → ∞ we	might	see



!" #
0																							&!	' = 0
1																							&!	' = 1

!"*+ + !"*-								./ℎ123&41	

5&6('):
If ' = 0:
return 0

ElseIf ' = 1:
return 1

Else:
return 5&6(' − 1) 	+ 	5&6(' − 2)

What	does	the	recurrence	relation	<(') look	like?	

< ' = < ' − 1 + < ' − 2 + 1
< 0 = 1, < 1 = 1

< ' = < ' − 1 + < ' − 1 + 1
< ' = 2< ' − 1 + 1 ≤ 2 ⋅ 2"

≤ @(2"A+)

First,	if	we	squint	and	assume	' → ∞ we	might	see

This	is	wrong!
I	was	not	careful	
and	made	an	

error!

Correct	the	record:	2	mistakes



!" #
0																							&!	' = 0
1																							&!	' = 1

!"*+ + !"*-								./ℎ123&41	

5&6('):
If ' = 0:
return 0

ElseIf ' = 1:
return 1

Else:
return 5&6(' − 1) 	+ 	5&6(' − 2)

What	does	the	recurrence	relation	<(') look	like?	

< ' = < ' − 1 + < ' − 2 + 1
< 0 = 1, < 1 = 1

< ' = < ' − 1 + < ' − 1 + 1
< ' = 2< ' − 1 + 1 ≤ @(2")

First,	if	we	squint	and	assume	' → ∞ we	might	see

Correct	the	record:	2	mistakes



!" #
0																							&!	' = 0
1																							&!	' = 1

!"*+ + !"*-								./ℎ123&41	

5&6('):
If ' = 0:
return 0

ElseIf ' = 1:
return 1

Else:
return 5&6(' − 1) 	+ 	5&6(' − 2)

What	does	the	recurrence	relation	<(') look	like?	

< ' = < ' − 1 + < ' − 2 + 1
< 0 = 1, < 1 = 1

< 2 = < 1 + < 0 + 1 = 3
< 3 = < 2 + < 1 + 1 = 5
< 4 = < 3 + < 2 + 1 = 9

5&6 3 = 5&6 2 + 5&6 1 = 2
5&6 4 = 5&6 3 + 5&6 2 = 3
5&6 5 = 5&6 4 + 5&6 3 = 5

< 4 = 25&6 4 + 1 − 1 = 9

< 2 = 25&6 2 + 1 − 1 = 3
< 3 = 25&6 3 + 1 − 1 = 5

< ' = 2!"A+ − 1

Correct	the	record:	2	mistakes



!" #
0																							&!	' = 0
1																							&!	' = 1

!"*+ + !"*-								./ℎ123&41	

5&6('):
If ' = 0:
return 0

ElseIf ' = 1:
return 1

Else:
return 5&6(' − 1) 	+ 	5&6(' − 2)

What	does	the	recurrence	relation	<(') look	like?	

< ' = < ' − 1 + < ' − 2 + 1
< 0 = 1, < 1 = 1

< 2 = < 1 + < 0 + 1 = 3
< 3 = < 2 + < 1 + 1 = 5
< 4 = < 3 + < 2 + 1 = 9

5&6 3 = 5&6 2 + 5&6 1 = 2
5&6 4 = 5&6 3 + 5&6 2 = 3
5&6 5 = 5&6 4 + 5&6 3 = 5

< 4 = 25&6 4 + 1 − 1 = 9

< 2 = 25&6 2 + 1 − 1 = 3
< 3 = 25&6 3 + 1 − 1 = 5

< ' = 2!"A+ − 1 → 2< ' + 1 ≤ @(2"A+)

This	is	wrong!

Correct	the	record:	2	mistakes



!" #
0																							&!	' = 0
1																							&!	' = 1

!"*+ + !"*-								./ℎ123&41	

5&6('):
If ' = 0:
return 0

ElseIf ' = 1:
return 1

Else:
return 5&6(' − 1) 	+ 	5&6(' − 2)

What	does	the	recurrence	relation	<(') look	like?	

< ' = < ' − 1 + < ' − 2 + 1
< 0 = 1, < 1 = 1

< 2 = < 1 + < 0 + 1 = 3
< 3 = < 2 + < 1 + 1 = 5
< 4 = < 3 + < 2 + 1 = 9

5&6 3 = 5&6 2 + 5&6 1 = 2
5&6 4 = 5&6 3 + 5&6 2 = 3
5&6 5 = 5&6 4 + 5&6 3 = 5

< 4 = 25&6 4 + 1 − 1 = 9

< 2 = 25&6 2 + 1 − 1 = 3
< 3 = 25&6 3 + 1 − 1 = 5

< ' = 2!"A+ − 1

The	important	point	
is	that	just	counting	

to	!" would	be	
twice	as	fast!

Correct	the	record:	2	mistakes



Today:	Dynamic	Programming	Subset	Sum



Subset	Sum

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

< ' = 2< ' − 1 + @ 1 ≤ @(2")

We	are	given	a	set	of	' positive	integers	
I = 	 J+,	J-,	 … , J" and	a	target	integer	
value	<.	We	want	to	find	a	subset	Y ⊆ I

such	that	the	sum	of	the	elements	
∑ JO = <�QR∈T .

Our	problem:	For	a	given	< and	I,	does	
such	a	Y exist?



Subset	Sum

• We	know	our	algorithm	is	
correct,	but	it	is	very	slow
• Let’s	reformulate	it	with	
dynamic	programming

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

We	are	given	a	set	of	' positive	integers	
I = 	 J+,	J-,	 … , J" and	a	target	integer	
value	<.	We	want	to	find	a	subset	Y ⊆ I

such	that	the	sum	of	the	elements	
∑ JO = <�QR∈T .

Our	problem:	For	a	given	< and	I,	does	
such	a	Y exist?

< ' = 2< ' − 1 + @ 1 ≤ @(2")



Formulating	Subset	Sum	for	Dynamic	Programming

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?



Formulating	Subset	Sum	for	Dynamic	Programming

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?



Formulating	Subset	Sum	for	Dynamic	Programming

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?



Formulating	Subset	Sum	for	Dynamic	Programming

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?



Formulating	Subset	Sum	for	Dynamic	Programming

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?



SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

Formulating	Subset	Sum	for	Dynamic	Programming

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

What	are	our	
subproblems?

Define	a	boolean function	UV6UVW(&, /) that	returns	<2V1 if	
and	only	if	there	is	a	subset	of	I[&. . '] sums	to	/.	



SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

Formulating	Subset	Sum	for	Dynamic	Programming

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

What	are	our	
subproblems?

Define	a	boolean function	UV6UVW(&, /) that	returns	<2V1 if	
and	only	if	there	is	a	subset	of	I[&. . '] sums	to	/.	



UV6UVW(&, /) =
<2V1																																																																										&!	/ = 0
5[\41																																																																									&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / + I[&] 				./ℎ123&41

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

Formulating	Subset	Sum	for	Dynamic	Programming

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

What	are	our	
subproblems?

Define	a	boolean function	UV6UVW(&, /) that	returns	<2V1 if	
and	only	if	there	is	a	subset	of	I[&. . '] sums	to	/.	



UV6UVW(&, /) =
<2V1																																																																										&!	/ = 0
5[\41																																																																									&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / + I[&] 				./ℎ123&41

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

Formulating	Subset	Sum	for	Dynamic	Programming

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

What	are	our	
subproblems?

Define	a	boolean function	UV6UVW(&, /) that	returns	<2V1 if	
and	only	if	there	is	a	subset	of	I[&. . '] sums	to	/.	



UV6UVW(&, /) =
<2V1																																																																										&!	/ = 0
5[\41																																																																									&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / + I[&] 				./ℎ123&41

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

Formulating	Subset	Sum	for	Dynamic	Programming

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

What	are	our	
subproblems?

Define	a	boolean function	UV6UVW(&, /) that	returns	<2V1 if	
and	only	if	there	is	a	subset	of	I[&. . '] sums	to	/.	



UV6UVW(&, /) =
<2V1																																																																										&!	/ = 0
5[\41																																																																									&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / + I[&] 				./ℎ123&41

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

Formulating	Subset	Sum	for	Dynamic	Programming

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

What	are	our	
subproblems?

Define	a	boolean function	UV6UVW(&, /) that	returns	<2V1 if	
and	only	if	there	is	a	subset	of	I[&. . '] sums	to	/.	



UV6UVW(&, /) =
<2V1																																																																										&!	/ = 0
5[\41																																																																									&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / + I[&] 				./ℎ123&41

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

Formulating	Subset	Sum	for	Dynamic	Programming

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

What	are	our	
subproblems?

Define	a	boolean function	UV6UVW(&, /) that	returns	<2V1 if	
and	only	if	there	is	a	subset	of	I[&. . '] sums	to	/.	



SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

Formulating	Subset	Sum	for	Dynamic	Programming
What	data	structure	

can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

UU(&, /) =
<2V1																																																																											&!	/ = 0
5[\41																																																																										&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / − I[&] 				./ℎ123&41

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?



SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

We	can	fill	a	2	dimensional	array	with	the	
following	dimensions:

U 1. . ' + 1, 0. . < = UV6UVW(&, /)

Formulating	Subset	Sum	for	Dynamic	Programming
What	data	structure	

can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

UU(&, /) =
<2V1																																																																											&!	/ = 0
5[\41																																																																										&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / − I[&] 				./ℎ123&41

What	are	our	
subproblems?

What	data	structure	
can	we	use	for	
memoization?

U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
U(3,0) U(3,1) U(3,2) U(3,3)
U(4,0) U(4,1) U(4,2) U(4,3)

'

<



SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

Formulating	Subset	Sum	for	Dynamic	Programming
What	data	structure	

can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

UU(&, /) =
<2V1																																																																											&!	/ = 0
5[\41																																																																										&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / − I[&] 				./ℎ123&41

What	are	our	
subproblems?

We	can	fill	a	2	dimensional	array	
with	the	following	dimensions:

U 1. . ' + 1, 0. . < = UV6UVW(&, /)

U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
U(3,0) U(3,1) U(3,2) U(3,3)
U(4,0) U(4,1) U(4,2) U(4,3)

'

<



SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

Formulating	Subset	Sum	for	Dynamic	Programming
What	data	structure	

can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

UU(&, /) =
<2V1																																																																											&!	/ = 0
5[\41																																																																										&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / − I[&] 				./ℎ123&41

What	are	our	
subproblems?

We	can	fill	a	2	dimensional	array	
with	the	following	dimensions:

U 1. . ' + 1, 0. . < = UV6UVW(&, /)

U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
U(3,0) U(3,1) U(3,2) U(3,3)
U(4,0) U(4,1) U(4,2) U(4,3)

'

<

UV6UVW &, / can	depend	on	
UV6UVW & + 1, / and	
UV6UVW & + 1, / − I[&] .	So	
we	can	start	at	the	bottom	of	
the	table	and	work	up.	



SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

Formulating	Subset	Sum	for	Dynamic	Programming
What	data	structure	

can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

UU(&, /) =
<2V1																																																																											&!	/ = 0
5[\41																																																																										&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / − I[&] 				./ℎ123&41

What	are	our	
subproblems?

We	can	fill	a	2	dimensional	array	
with	the	following	dimensions:

U 1. . ' + 1, 0. . < = UV6UVW(&, /)

U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
U(3,0) U(3,1) U(3,2) U(3,3)
U(4,0) U(4,1) U(4,2) U(4,3)

'

<

UV6UVW &, / can	depend	on	
UV6UVW & + 1, / and	
UV6UVW & + 1, / − I[&] .	So	
we	can	start	at	the	bottom	of	
the	table	and	work	up.	

Start

End



SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

Formulating	Subset	Sum	for	Dynamic	Programming
What	data	structure	

can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

UU(&, /) =
<2V1																																																																											&!	/ = 0
5[\41																																																																										&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / − I[&] 				./ℎ123&41

What	are	our	
subproblems?

We	can	fill	a	2	dimensional	array	
with	the	following	dimensions:

U 1. . ' + 1, 0. . < = UV6UVW(&, /)

U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
U(3,0) U(3,1) U(3,2) U(3,3)
U(4,0) U(4,1) U(4,2) U(4,3)

'

<

UV6UVW &, / can	depend	on	
UV6UVW & + 1, / and	
UV6UVW & + 1, / − I[&] .	So	
we	can	start	at	the	bottom	of	
the	table	and	work	up.	

What	are	the	space/time	
requirements?

Space	
requirement	
is	@('<)



SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

Formulating	Subset	Sum	for	Dynamic	Programming
What	data	structure	

can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

UU(&, /) =
<2V1																																																																											&!	/ = 0
5[\41																																																																										&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / − I[&] 				./ℎ123&41

What	are	our	
subproblems?

We	can	fill	a	2	dimensional	array	
with	the	following	dimensions:

U 1. . ' + 1, 0. . < = UV6UVW(&, /)

U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
U(3,0) U(3,1) U(3,2) U(3,3)
U(4,0) U(4,1) U(4,2) U(4,3)

'

<

What	are	the	space/time	
requirements?

Space:	@ '<UV6UVW &, / can	depend	on	
UV6UVW & + 1, / and	
UV6UVW & + 1, / − I[&] .	So	
we	can	start	at	the	bottom	of	
the	table	and	work	up.	



SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

Formulating	Subset	Sum	for	Dynamic	Programming
What	data	structure	

can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

UU(&, /) =
<2V1																																																																											&!	/ = 0
5[\41																																																																										&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / − I[&] 				./ℎ123&41

What	are	our	
subproblems?

We	can	fill	a	2	dimensional	array	
with	the	following	dimensions:

U 1. . ' + 1, 0. . < = UV6UVW(&, /)

U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
U(3,0) U(3,1) U(3,2) U(3,3)
U(4,0) U(4,1) U(4,2) U(4,3)

'

<

What	are	the	space/time	
requirements?

Space:	@ '<
Time:	@('<)

Using	our	
evaluation	order,	
we	can	fill	the	

table	in	constant	
time	per	update,	

so	the	time	
complexity	is	also	

@('<)

UV6UVW &, / can	depend	on	
UV6UVW & + 1, / and	
UV6UVW & + 1, / − I[&] .	So	
we	can	start	at	the	bottom	of	
the	table	and	work	up.	



At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

Formulating	Subset	Sum	for	Dynamic	Programming
What	data	structure	

can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

UU(&, /) =
<2V1																																																																											&!	/ = 0
5[\41																																																																										&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / − I[&] 				./ℎ123&41

What	are	our	
subproblems?

We	can	fill	a	2	dimensional	array	
with	the	following	dimensions:

U 1. . ' + 1, 0. . < = UV6UVW(&, /)
Space:	@ '<
Time:	@('<)

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

UV6UVW &, / can	depend	on	
UV6UVW & + 1, / and	
UV6UVW & + 1, / − I[&] .	So	
we	can	start	at	the	bottom	of	
the	table	and	work	up.	



At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

Formulating	Subset	Sum	for	Dynamic	Programming
What	data	structure	

can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

UU(&, /) =
<2V1																																																																											&!	/ = 0
5[\41																																																																										&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / − I[&] 				./ℎ123&41

What	are	our	
subproblems?

We	can	fill	a	2	dimensional	array	
with	the	following	dimensions:

U 1. . ' + 1, 0. . < = UV6UVW(&, /)
Space:	@ '<
Time:	@('<)

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

UV6UVW &, / can	depend	on	
UV6UVW & + 1, / and	
UV6UVW & + 1, / − I[&] .	So	
we	can	start	at	the	bottom	of	
the	table	and	work	up.	

Let’s		see	an	example



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
U(3,0) U(3,1) U(3,2) U(3,3)
U(4, 0) U(4,1) U(4,2) U(4,3)



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
U(3,0) U(3,1) U(3,2) U(3,3)
T F F F



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

X[i]	=	3

U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
T U(3,1) U(3,2) U(3,3)
T F F F



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

X[i]	=	3

U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
T F F U(3,3)
T F F F



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
T F F T
T F F F

X[i]	=	3



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

X[i]	=	2
U(1,0) U(1,1) U(1,2) U(1,3)
U(2,0) U(2,1) U(2,2) U(2,3)
T F F T
T F F F



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

U(1,0) U(1,1) U(1,2) U(1,3)
T F U(2,2) U(2,3)
T F F T
T F F F

X[i]	=	2



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

U(1,0) U(1,1) U(1,2) U(1,3)
T F T U(2,3)
T F F T
T F F F

X[i]	=	2



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

U(1,0) U(1,1) U(1,2) U(1,3)
T F T T
T F F T
T F F F

X[i]	=	2



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

T U(1,1) U(1,2) U(1,3)
T F T T
T F F T
T F F F

X[i]	=	1



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

T U(1,1) U(1,2) U(1,3)
T F T T
T F F T
T F F F

X[i]	=	1



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

T U(1,1) U(1,2) U(1,3)
T F T T
T F F T
T F F F

X[i]	=	1

Since	U[1,3] checks	U[2, 3] which	is	
<2V1,	we	know	we	have	a	solution!		



Dynamic	Programming	Subset	Sum	Example

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

I	 = 1,2,3 , < = 3

T T T T
T F T T
T F F T
T F F F

X[i]	=	1

Since	U[1,3] checks	U[2, 3] which	is	
<2V1,	we	know	we	have	a	solution!		



Subset	Sum	Wrap

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

UU(&, /) =
<2V1																																																																											&!	/ = 0
5[\41																																																																										&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / − I[&] 				./ℎ123&41

What	are	our	
subproblems?

We	can	fill	a	2	dimensional	array	
with	the	following	dimensions:

U 1. . ' + 1, 0. . < = UV6UVW(&, /)
Space:	@ '<
Time:	@('<)

UV6UVW &, / can	depend	on	
UV6UVW & + 1, / and	
UV6UVW & + 1, / − I[&] .	So	
we	can	start	at	the	bottom	of	
the	table	and	work	up.	

Is	FastSubsetSum always faster	
than	the	recursive	version?



Subset	Sum	Wrap

FastSubsetSum(X[1..n], T):
U ' + 1, 0 ← <2V1
for / ← 1 to <:
U ' + 1, / ← 5[\41

for i← ' down to 1:
U &, 0 ← <2V1
for t ← 1 to I & − 1:
U &, / ← U[& + 1, /]

for / ← I[&] to <:
U &, / ← U & + 1, / 	⋁ 	U[& + 1, / − I[&]]��

return U 1, <

At	an	arbitrary	iteration	1 ≤ & ≤ ' + 1 and	/ ≤ <

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

UU(&, /) =
<2V1																																																																											&!	/ = 0
5[\41																																																																										&!	& > '

UV6UVW & + 1, / 																																																									&!	/ < I[&]
UV6UVW & + 1, / 	∨ UV6UVW & + 1, / − I[&] 				./ℎ123&41

What	are	our	
subproblems?

We	can	fill	a	2	dimensional	array	
with	the	following	dimensions:

U 1. . ' + 1, 0. . < = UV6UVW(&, /)
Space:	@ '<
Time:	@('<)

UV6UVW &, / can	depend	on	
UV6UVW & + 1, / and	
UV6UVW & + 1, / − I[&] .	So	
we	can	start	at	the	bottom	of	
the	table	and	work	up.	

Is	FastSubsetSum always faster	
than	the	recursive	version?

No!	If	< ≫ 2",	the	recursive	
version	is	actually	faster!



Edit	Distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.



Edit	Distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.



Edit	Distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

Substitution



Edit	Distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

Substitution Substitution



Edit	Distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

Substitution Substitution

Insertion



Edit	Distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

Substitution Substitution

Insertion

Substitution



Edit	Distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

Alternative:	Align	the	strings	and	count	the	differences



Edit	Distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

Alternative:	Align	the	strings	and	count	the	differences



Edit	Distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

Alternative:	Align	the	strings	and	count	the	differences

cd&/e&4/['f1 food,	money = 4



Formulating	a	recursive	edit	distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.



Formulating	a	recursive	edit	distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

What	should	our	subproblems be?



Formulating	a	recursive	edit	distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

What	should	our	subproblems be?
• Imagine	that	we	have	this	alignment	

representation	for	the	optimal	edit	distance



Formulating	a	recursive	edit	distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

What	should	our	subproblems be?
• Imagine	that	we	have	this	alignment	

representation	for	the	optimal	edit	distance
• Remove	the	last	column



Formulating	a	recursive	edit	distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

What	should	our	subproblems be?
• Imagine	that	we	have	this	alignment	

representation	for	the	optimal	edit	distance
• Remove	the	last	column	
• What	must	be	true	of	the	remaining	prefixes?



Formulating	a	recursive	edit	distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

What	should	our	subproblems be?
• Imagine	that	we	have	this	alignment	

representation	for	the	optimal	edit	distance
• Remove	the	last	column	
• What	must	be	true	of	the	remaining	prefixes?
• They	must	also	be	optimal!



Formulating	a	recursive	edit	distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

What	should	our	subproblems be?
• Imagine	that	we	have	this	alignment	

representation	for	the	optimal	edit	distance
• Remove	the	last	column	
• What	must	be	true	of	the	remaining	prefixes?
• They	must	also	be	optimal!

For	any	two	input	strings	n[1. . '] and	
o[1. . W],	let	

cd&/(&, p)

denote	the	edit	distance	between	
prefixes	n[1. . &] and	o 1. . p .	We	
need	to	compute	cd&/(',W).

1					2				3					 4

1					2				3					4				5



Formulating	a	recursive	edit	distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

1					2				3					 4

1					2				3					4				5

Decisions	here	do	not	
depend	on	what	was	
already	computed!

What	should	our	subproblems be?
• Imagine	that	we	have	this	alignment	

representation	for	the	optimal	edit	distance
• Remove	the	last	column	
• What	must	be	true	of	the	remaining	prefixes?
• They	must	also	be	optimal!

For	any	two	input	strings	n[1. . '] and	
o[1. . W],	let	

cd&/(&, p)

denote	the	edit	distance	between	
prefixes	n[1. . &] and	o 1. . p .	We	
need	to	compute	cd&/(',W).



Formulating	a	recursive	edit	distance

Each	call	to	cd&/(&, p)makes	a	
decision	about	how	to	align	the	last	

column	in	the	substring.
There	are	three	possibilities:



Formulating	a	recursive	edit	distance

Each	call	to	cd&/(&, p)makes	a	
decision	about	how	to	align	the	last	

column	in	the	substring.
There	are	three	possibilities:

1. Insertion

2. Deletion

3. Substitution

cd&/ &, p − 1 + 1

Arbitrary	Case



Formulating	a	recursive	edit	distance

Each	call	to	cd&/(&, p)makes	a	
decision	about	how	to	align	the	last	

column	in	the	substring.
There	are	three	possibilities:

1. Insertion

2. Deletion

3. Substitution

cd&/ &, p − 1 + 1

cd&/ & − 1, p + 1

Arbitrary	Case



Formulating	a	recursive	edit	distance

Each	call	to	cd&/(&, p)makes	a	
decision	about	how	to	align	the	last	

column	in	the	substring.
There	are	three	possibilities:

1. Insertion

2. Deletion

3. Substitution

cd&/ &, p − 1 + 1

cd&/ & − 1, p + 1

cd&/ & − 1, p − 1 + 1,	if	n & ≠ o[p]
cd&/ & − 1, p − 1 ,	if	n & = o[p]

Arbitrary	Case



Formulating	a	recursive	edit	distance

Each	call	to	cd&/(&, p)makes	a	
decision	about	how	to	align	the	last	

column	in	the	substring.
There	are	three	possibilities:

1. Insertion

2. Deletion

3. Substitution

cd&/ &, p − 1 + 1

cd&/ & − 1, p + 1

cd&/ & − 1, p − 1 + 1,	if	n & ≠ o[p]
cd&/ & − 1, p − 1 ,	if	n & = o[p]

Arbitrary	Case Base	Case

cd&/ 0, p = p to	insert	gaps	in	n[0. . p]

cd&/ &, 0 = & to	delete	characters	from	o[0. . &]



Formulating	a	recursive	edit	distance

Each	call	to	cd&/(&, p)makes	a	
decision	about	how	to	align	the	last	

column	in	the	substring.
There	are	three	possibilities:

1. Insertion

2. Deletion

3. Substitution

cd&/ &, p − 1 + 1

cd&/ & − 1, p + 1

cd&/ & − 1, p − 1 + 1,	if	n & ≠ o[p]
cd&/ & − 1, p − 1 ,	if	n & = o[p]

Arbitrary	Case Base	Case

cd&/ 0, p = p to	insert	gaps	in	n[0. . p]

cd&/ &, 0 = & to	delete	characters	from	o[0. . &]



Next	Time

We	will	formulate	a	dynamic	programming	algorithm	for	Edit	
Distance	and	discuss	the	Knapsack	Problem.



Wrap	up

No	new	reading	assignment	(still	chapter	3	of	Erickson)
• If	you	didn’t	follow	our	Edit	Distance	discussion,	read	3.7	before	Monday!

Work	on	homework	2!	Ask	questions	on	Piazza.

Midterm	next	Weds	8PM	– Fri	8PM.	
• Topics	will	be	everything	we	have	done	so	far:	

• Asymptotic	analysis	and	Divide	and	Conquer	(including	recursion,	backtracking,	and	dynamic	
programming)

• If	there	are	things	you	have	struggled	with,	strategize	sooner	rather	than	later	about	
how	you	will	review	them	before	Wednesday!

Enjoy	your	weekend!


