Lecture 8: More Dynamic Programming

Tim LaRock
larock.t@northeastern.edu
bit.ly/cs3000syllabus

Business

Keep working on homework 2!

- Ask questions early if you are stuck!

Take home midterm 1 will be next Wednesday through Friday (more at the end)

Today

Brief correction on yesterday's lecture Dynamic Programming

Subset Sum
Edit Distance

Correct the record: 2 mistakes

$f_{n}\left\{\begin{array}{cl}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f_{n-1}+f_{n-2} & \text { otherwise }\end{array}\right.$

```
Fib(n):
    If n=0:
        return 0
    ElseIf n=1:
        return 1
    Else:
        return Fib(n-1) + Fib(n-2)
```

What does the recurrence relation $T(n)$ look like?

$$
\begin{gathered}
T(0)=1, T(1)=1 \\
T(n)=T(n-1)+T(n-2)+1
\end{gathered}
$$

First, if we squint and assume $n \rightarrow \infty$ we might see

$$
\begin{aligned}
& T(n)=T(n-1)+T(n-1)+1 \\
& T(n)=2 T(n-1)+1 \leq 2 \cdot 2^{n} \\
& \leq O\left(2^{n+1}\right)
\end{aligned}
$$

Correct the record: 2 mistakes

$f_{n}\left\{\begin{array}{cl}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f_{n-1}+f_{n-2} & \text { otherwise }\end{array}\right.$

```
Fib(n):
    If }n=0
        return 0
    ElseIf n=1:
        return 1
    Else:
        return Fib(n-1) + Fib(n-2)
```

What does the recurrence relation $T(n)$ look like?

$$
\begin{gathered}
T(0)=1, T(1)=1 \\
T(n)=T(n-1)+T(n-2)+1
\end{gathered}
$$

First, if we squint and assume $n \rightarrow \infty$ we might see
his is wrong!
I was not careful and made an error!

$$
\begin{aligned}
& T(n)=T(n-1)+T(n-1)+1 \\
& T(n)=2 T(n-1)+1 \leq 2 \cdot 2^{n} \\
& \leq O\left(2^{n+1}\right)
\end{aligned}
$$

Correct the record: 2 mistakes

$f_{n}\left\{\begin{array}{cl}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f_{n-1}+f_{n-2} & \text { otherwise }\end{array}\right.$

```
Fib(n):
    If n=0:
        return 0
    ElseIf n=1:
        return 1
    Else:
        return Fib(n-1) + Fib(n-2)
```

What does the recurrence relation $T(n)$ look like?

$$
\begin{gathered}
T(0)=1, T(1)=1 \\
T(n)=T(n-1)+T(n-2)+1
\end{gathered}
$$

First, if we squint and assume $n \rightarrow \infty$ we might see

$$
\begin{aligned}
& T(n)=T(n-1)+T(n-1)+1 \\
& T(n)=2 T(n-1)+1 \leq O\left(2^{n}\right)
\end{aligned}
$$

Correct the record: 2 mistakes

$f_{n}\left\{\begin{array}{cl}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f_{n-1}+f_{n-2} & \text { otherwise }\end{array}\right.$

```
Fib(n):
    If }n=0
        return 0
    ElseIf n=1:
        return 1
    Else:
        return Fib(n-1) + Fib(n-2)
```

What does the recurrence relation $T(n)$ look like?

$$
\begin{gathered}
T(0)=1, T(1)=1 \\
T(n)=T(n-1)+T(n-2)+1
\end{gathered}
$$

$$
\begin{array}{l|l}
T(2)=T(1)+T(0)+1=3 & F i b(3)=F i b(2)+F i b(1)=2 \\
T(3)=T(2)+T(1)+1=5 & F i b(4)=F i b(3)+F i b(2)=3 \\
T(4)=T(3)+T(2)+1=9 & F i b(5)=F i b(4)+F i b(3)=5
\end{array}
$$

$$
T(2)=2 F i b(2+1)-1=3
$$

$$
T(3)=2 F i b(3+1)-1=5
$$

$$
T(4)=2 F i b(4+1)-1=9
$$

$$
T(n)=2 f_{n+1}-1
$$

Correct the record: 2 mistakes

$f_{n}\left\{\begin{array}{cl}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f_{n-1}+f_{n-2} & \text { otherwise }\end{array}\right.$

```
Fib(n):
    If }n=0
        return 0
    ElseIf n=1:
        return 1
    Else:
        return Fib(n-1) + Fib(n-2)
```

What does the recurrence relation $T(n)$ look like?

$$
\begin{gathered}
T(0)=1, T(1)=1 \\
T(n)=T(n-1)+T(n-2)+1
\end{gathered}
$$

$$
\begin{array}{c|l}
T(2)=T(1)+T(0)+1=3 & F i b(3)=F i b(2)+F i b(1)=2 \\
T(3)=T(2)+T(1)+1=5 & F i b(4)=F i b(3)+F i b(2)=3 \\
T(4)=T(3)+T(2)+1=9 & F i b(5)=F i b(4)+F i b(3)=5
\end{array}
$$

$$
\begin{aligned}
& T(2)=2 F i b(2+1)-1=3 \\
& T(3)=2 F i b(3+1)-1=5 \\
& T(4)=2 F i b(4+1)-1=9 \\
& T(n)=2 f_{n+1}-1 \rightarrow 2 T(n+1) \leq 0\left(2^{n+1}\right)
\end{aligned} \quad \text { This is wrong! }
$$

Correct the record: 2 mistakes

$f_{n}\left\{\begin{array}{cl}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f_{n-1}+f_{n-2} & \text { otherwise }\end{array}\right.$

```
Fib(n):
    If }n=0
        return 0
    ElseIf n=1:
        return 1
    Else:
        return Fib(n-1) + Fib(n-2)
```

What does the recurrence relation $T(n)$ look like?

$$
\begin{gathered}
T(0)=1, T(1)=1 \\
T(n)=T(n-1)+T(n-2)+1
\end{gathered}
$$

$$
\begin{array}{l|l}
T(2)=T(1)+T(0)+1=3 & F i b(3)=F i b(2)+F i b(1)=2 \\
T(3)=T(2)+T(1)+1=5 & F i b(4)=F i b(3)+F i b(2)=3 \\
T(4)=T(3)+T(2)+1=9 & F i b(5)=F i b(4)+F i b(3)=5
\end{array}
$$

The important point
is that just counting

$$
T(2)=2 F i b(2+1)-1=3
$$

$$
T(3)=2 F i b(3+1)-1=5
$$

$$
2 N-1
$$

to f_{n} would be
twice as fast!

$$
T(4)=2 F i b(4+1)-1=9
$$

$$
T(n)=2 f_{n+1}-1 \quad N=f_{n_{+1}}
$$

Today: Dynamic Programming Subset Sum

Subset Sum

$$
T(n)=2 T(n-1)+O(1) \leq O\left(2^{n}\right)
$$

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```

We are given a set of n positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and a target integer value T. We want to find a subset $\mathrm{Y} \subseteq X$ such that the sum of the elements

$$
\sum_{x_{i} \in Y} x_{i}=T .
$$

Our problem: For a given T and X, does such a Y exist?

Subset Sum

$$
T(n)=2 T(n-1)+O(1) \leq O\left(2^{n}\right)
$$

```
```

SubsetSum(X[1..n], i, T):

```
```

SubsetSum(X[1..n], i, T):
If T = 0:
If T = 0:
return True
return True
ElseIf T < 0 or i = 0:
ElseIf T < 0 or i = 0:
return False
return False
Else:
Else:
with \leftarrow SubsetSum(X, i-1, T - X[i])
with \leftarrow SubsetSum(X, i-1, T - X[i])
wout \leftarrow SubsetSum(X, i-1, T)
wout \leftarrow SubsetSum(X, i-1, T)
return with OR wout

```
```

 return with OR wout
    ```
```

We are given a set of n positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and a target integer value T. We want to find a subset $\mathrm{Y} \subseteq X$ such that the sum of the elements

$$
\sum_{x_{i} \in Y} x_{i}=T .
$$

Our problem: For a given T and X, does such a Y exist?

- We know our algorithm is correct, but it is very slow
- Let's reformulate it with dynamic programming

Formulating Subset Sum for Dynamic Programming

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Formulating Subset Sum for Dynamic Programming

What are our subproblems?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure
can we use for memoization?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?

Which subproblems depend on each other, and what evaluation order does this imply?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?

Which subproblems depend on each other, and what evaluation order does this imply?

What are the space/time requirements?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?

Which subproblems depend on each other, and what evaluation order does this imply?

What are the space/time requirements?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout }\leftarrow\mathrm{ SubsetSum(X, i-1, T)
        return with OR wout
```


Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?

Which subproblems depend on each other, and what evaluation order does this imply?

What are the space/time requirements?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < O or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout }\leftarrow\mathrm{ SubsetSum(X, i-1, T)
        return with OR wout
```


What are our

 subproblems?Define a boolean function $\operatorname{SubSum}(i, t)$ that returns True if and only if there is a subset of $X[i . . n]$ sums to t.
At an arbitrary iteration $1 \leq i \leq n+1$ and $t \leq T$

Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?

Which subproblems depend on each other, and what evaluation order does this imply?

What are the space/time requirements?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < 0 or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?

Which subproblems depend on each other, and what evaluation order does this imply?

What are the space/time requirements?

```
SubsetSum(X[1..n], i, T):
```

SubsetSum(X[1..n], i, T):
If T = 0:
If T = 0:
return True
return True
ElseIf T < 0 or i = 0:
ElseIf T < 0 or i = 0:
return False
return False
Else:
Else:
with \leftarrow SubsetSum(X, i-1, T - X[i])
with \leftarrow SubsetSum(X, i-1, T - X[i])
wout \leftarrow SubsetSum(X, i-1, T)
wout \leftarrow SubsetSum(X, i-1, T)
return with OR wout

```
        return with OR wout
```


Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?

Which subproblems depend on each other, and what evaluation order does this imply?

What are the space/time requirements?

What are our

 subproblems?```
SubsetSum(X[1..n], i, T):
 If T = 0:
 return True
 ElseIf T < 0 or i = 0:
 return False
 Else:
 with \leftarrow SubsetSum(X, i-1, T - X[i])
 wout \leftarrow SubsetSum(X, i-1, T)
 return with OR wout
```


## Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?

Which subproblems depend on each other, and what evaluation order does this imply?

What are the space/time requirements?

## What are our

 subproblems?```
SubsetSum(X[1..n], i, T):
```

SubsetSum(X[1..n], i, T):
If T = 0:
If T = 0:
return True
return True
ElseIf T < 0 or i = 0:
ElseIf T < 0 or i = 0:
return False
return False
Else:
Else:
with \leftarrow SubsetSum(X, i-1, T - X[i])
with \leftarrow SubsetSum(X, i-1, T - X[i])
wout \leftarrow SubsetSum(X, i-1, T)
wout \leftarrow SubsetSum(X, i-1, T)
return with OR wout

```
        return with OR wout
```


Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?

Which subproblems depend on each other, and what evaluation order does this imply?

What are the space/time requirements?

What are our

 subproblems?Define a boolean function $\operatorname{SubSum}(i, t)$ that returns True if and only if there is a subset of $X[i . . n]$ sums to t.
At an arbitrary iteration $1 \leq i \leq n+1$ and $t \leq T$
$\operatorname{SubSum}(i, t)= \begin{cases}\text { True } & \text { if } t=0 \\ \text { False } & \text { if } i>n \\ \operatorname{SubSum}(i+1, t) & \text { if } t<X[i] \\ \operatorname{SubSum}(i+1, t) \vee \operatorname{SubSum}(i+1, t) X[i]) & \text { otherwise }\end{cases}$

Formulating Subset Sum for Dynamic Programming

What are our subproblems?

```
        At an arbitrary iteration 1\leqi\leqn+1 and t\leqT
\(\operatorname{SS}(i, t)= \begin{cases}\text { True } & \text { if } t=0 \\ \text { False } & \text { if } i>n \\ \operatorname{SubSum}(i+1, t) & \text { if } t<X[i] \\ \operatorname{SubSum}(i+1, t) \vee \operatorname{SubSum}(i+1, t-X[i]) & \text { otherwise }\end{cases}\)
```

```
SubsetSum(X[1..n], i, T):
```

SubsetSum(X[1..n], i, T):

```
SubsetSum(X[1..n], i, T):
    If T = 0:
    If T = 0:
    If T = 0:
        return True
        return True
        return True
    ElseIf T < 0 or i = 0:
    ElseIf T < 0 or i = 0:
    ElseIf T < 0 or i = 0:
        return False
        return False
        return False
    Else:
    Else:
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout }\leftarrow\operatorname{SubsetSum(X, i-1, T)
        wout }\leftarrow\operatorname{SubsetSum(X, i-1, T)
        wout }\leftarrow\operatorname{SubsetSum(X, i-1, T)
        return with OR wout
```

 return with OR wout
    ```
        return with OR wout
```

What data structure can we use for memoization?

Which subproblems depend on each other, and what evaluation order does this imply?

What are the space/time requirements?

Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?

Which subproblems depend on each other, and what evaluation order does this imply?

What are the space/time requirements?

What data structure can we use for memoization?

We can fill a 2 dimensional array with the following dimensions:
$S[1 . . n+1,0 . . T]=\operatorname{SubSum}(i, t)$

$$
\begin{array}{|c|c|c|c|}
\hline S(1,0) & S(1,1) & S(1,2) & S(1,3) \\
\hline S(2,0) & S(2,1) & S(2,2) & S(2,3) \\
\hline S(3,0) & S(3,1) & S(3,2) & S(3,3) \\
\hline S(4,0) & S(4,1) & S(4,2) & S(4,3) \\
\hline
\end{array}
$$

Formulating Subset Sum for Dynamic Programming

What are our subproblems?

$$
\begin{aligned}
& \text { At an arbitrary iteration } 1 \leq i \leq n+1 \text { and } t \leq T \\
& \operatorname{SS}(i, t)= \begin{cases}\text { True } & \text { if } t=0 \\
\text { False } & \text { if } i>n \\
\operatorname{SubSum}(i+1, t) & \text { if } t<X[i] \\
\operatorname{SubSum}(i+1, t) \vee \operatorname{SubSum}(i+1, t-X[i]) & \text { otherwise }\end{cases}
\end{aligned}
$$

What data structure can we use for memoization?
We can fill a 2 dimensional array with the following dimensions: $S[1 . . n+1,0 . . T]=\operatorname{SubSum}(i, t)$

Which subproblems depend on each other, and what evaluation order does this imply?

What are the space/time requirements?

```
```

SubsetSum(X[1..n], i, T):

```
```

SubsetSum(X[1..n], i, T):
If T = 0:
If T = 0:
return True
return True
ElseIf T < 0 or i = 0:
ElseIf T < 0 or i = 0:
return False
return False
Else:
Else:
with \leftarrow SubsetSum(X, i-1, T - X[i])
with \leftarrow SubsetSum(X, i-1, T - X[i])
wout \leftarrow SubsetSum(X, i-1, T)
wout \leftarrow SubsetSum(X, i-1, T)
return with OR wout

```
```

 return with OR wout
    ```
```


T

Formulating Subset Sum for Dynamic Programming

What are our subproblems?

```
SubsetSum(X[1..n], i, T):
```

SubsetSum(X[1..n], i, T):
If T = 0:
If T = 0:
return True
return True
ElseIf T < 0 or i = 0:
ElseIf T < 0 or i = 0:
return False
return False
Else:
Else:
with \leftarrow SubsetSum(X, i-1, T - X[i])
with \leftarrow SubsetSum(X, i-1, T - X[i])
wout \leftarrow SubsetSum(X, i-1, T)
wout \leftarrow SubsetSum(X, i-1, T)
return with OR wout

```
        return with OR wout
```

What data structure can we use for memoization?
We can fill a 2 dimensional array with the following dimensions: $S[1 . . n+1,0 . . T]=\operatorname{SubSum}(i, t)$

Which subproblems depend on each other, and what evaluation order does this imply?
$\operatorname{SubSum}(i, t)$ can depend on $\operatorname{SubSum}(i+1, t)$ and $\operatorname{SubSum}(i+1, t-X[i])$. So we can start at the bottom of the table and work up.

$$
n
$$

```
\[
S(1,0) \quad S(1,1) \quad S(1,2) \quad S(1,3)
\]
\[
S(2,0) \quad S(2,1) \quad S(2,2) \quad S(2,3)
\]
```

What are the space/time requirements?

Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?
We can fill a 2 dimensional array with the following dimensions: $S[1 . . n+1,0 . . T]=\operatorname{SubSum}(i, t)$

Which subproblems depend on each other, and what evaluation order does this imply?
$\operatorname{SubSum}(i, t)$ can depend on $\operatorname{SubSum}(i+1, t)$ and $\operatorname{SubSum}(i+1, t-X[i])$. So we can start at the bottom of the table and work up.

End
$S(1,0) \quad S(1,1) S(1,2) S(1,3)$
$S(2,0) \quad S(2,1) \quad S(2,2) \quad S(2,3)$
n

n

What are the space/time requirements?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < O or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?
We can fill a 2 dimensional array with the following dimensions: $S[1 . . n+1,0 . . T]=\operatorname{SubSum}(i, t)$

Which subproblems depend on each other, and what evaluation order does this imply?
$\operatorname{SubSum}(i, t)$ can depend on $\operatorname{SubSum}(i+1, t)$ and $\operatorname{SubSum}(i+1, t-X[i])$. So we can start at the bottom of the table and work up.

What are the space/time requirements?
ElseIf $T<0$ or $i=0$: return False
Else:
with \leftarrow SubsetSum(X, i-1, $T-X[i])$
wout $\leftarrow \operatorname{SubsetSum(X,i-1,T)~}$
return with OR wout

| $S(1,0)$ | $S(1,1)$ | $S(1,2)$ | $S(1,3)$ |
| :--- | :--- | :--- | :--- |
| $S(2,0)$ | $S(2,1)$ | $S(2,2)$ | $S(2,3)$ |
| $S(3,0)$ | $S(3,1)$ | $S(3,2)$ | $S(3,3)$ |
| $S(4,0)$ | $S(4,1)$ | $S(4,2)$ | $S(4,3)$ |

What are the space/time requirements?

Space
requirement
is $O(n T)$

Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?
We can fill a 2 dimensional array with the following dimensions: $S[1 . . n+1,0 . . T]=\operatorname{SubSum}(i, t)$

Which subproblems depend on each other, and what evaluation order does this imply?
$\operatorname{SubSum}(i, t)$ can depend on $\operatorname{SubSum}(i+1, t)$ and $\operatorname{SubSum}(i+1, t-X[i])$. So we can start at the bottom of the table and work up.

What are the space/time requirements?

$$
n
$$

```
\[
S(1,0) \quad S(1,1) \quad S(1,2) \quad S(1,3)
\]
\[
S(2,0) \quad S(2,1) \quad S(2,2) \quad S(2,3)
\]
```

What are the space/time requirements?

```
SubsetSum(X[1..n], i, T):
    If T = 0:
        return True
    ElseIf T < O or i = 0:
        return False
    Else:
        with \leftarrow SubsetSum(X, i-1, T - X[i])
        wout \leftarrow SubsetSum(X, i-1, T)
        return with OR wout
```


Formulating Subset Sum for Dynamic Programming

What are our subproblems?

What data structure can we use for memoization?
We can fill a 2 dimensional array with the following dimensions: $S[1 . . n+1,0 . . T]=\operatorname{SubSum}(i, t)$

Which subproblems depend on each other, and what evaluation order does this imply?
$\operatorname{SubSum}(i, t)$ can depend on $\operatorname{SubSum}(i+1, t)$ and $\operatorname{SubSum}(i+1, t-X[i])$. So we can start at the bottom of the table and work up.

What are the space/time requirements?

| $S(1,0)$ | $S(1,1)$ | $S(1,2)$ | $S(1,3)$ |
| :--- | :--- | :--- | :--- |
| $S(2,0)$ | $S(2,1)$ | $S(2,2)$ | $S(2,3)$ |
| $S(3,0)$ | $S(3,1)$ | $S(3,2)$ | $S(3,3)$ |
| $S(4,0)$ | $S(4,1)$ | $S(4,2)$ | $S(4,3)$ |

What are the space/time requirements?

Space: $O(n T)$
Time: $O(n T)$

Using our evaluation order, we can fill the table in constant time per update, so the time
complexity is also $O(n T)$

Formulating Subset Sum for Dynamic Programming

What are our subproblems?
At an arbitrary iteration $1 \leq i \leq n+1$ and $t \leq T$
$\operatorname{SS}(i, t)= \begin{cases}\text { True } & \text { if } t=0 \\ \text { False } & \text { if } i>n \\ \operatorname{SubSum}(i+1, t) & \text { if } t<X[i] \\ \operatorname{SubSum}(i+1, t) \vee \operatorname{SubSum}(i+1, t-X[i]) & \text { otherwise }\end{cases}$

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]\leftarrowTrue
    for t}\leftarrow1\mathrm{ to }T\mathrm{ :
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]\leftarrowTrue
        for t \leftarrow1 to X[i]-1:
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t] \vee S[i+1,t-X[i]]
    return S[1,T]
```

Which subproblems depend on each other, and what evaluation order does this imply?
SubSum (i, t) can depend on $\operatorname{SubSum}(i+1, t)$ and $\operatorname{SubSum}(i+1, t-X[i])$. So we can start at the bottom of the table and work up.

What are the space/time requirements?

Space: $O(n T)$
Time: $O(n T)$

Formulating Subset Sum for Dynamic Programming

What are our subproblems?
At an arbitrary iteration $1 \leq i \leq n+1$ and $t \leq T$
$\operatorname{SS}(i, t)= \begin{cases}\text { True } & \text { if } t=0 \\ \text { False } & \text { if } i>n \\ \operatorname{SubSum}(i+1, t) & \text { if } t<X[i] \\ \operatorname{SubSum}(i+1, t) \vee \operatorname{SubSum}(i+1, t-X[i]) & \text { otherwise }\end{cases}$

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]\leftarrowTrue
    for t}\leftarrow1\mathrm{ to }T\mathrm{ :
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]}\leftarrow\mathrm{ True
        for t \leftarrow1 to X[i]-1:
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t] \vee S[i+1,t-X[i]]
    return S[1,T]
```

Which subproblems depend on each other, and what evaluation order does this imply?
SubSum (i, t) can depend on $\operatorname{SubSum}(i+1, t)$ and $\operatorname{SubSum}(i+1, t-X[i])$. So we can start at the bottom of the table and work up.

What are the space/time requirements?

Let's see an example

Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]\leftarrowTrue
    for }t\leftarrow1\mathrm{ to T:
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]}\leftarrow\mathrm{ True
        for t \leftarrow1 to X[i]-1:
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t]\veeS[i+1,t-X[i]]
    return S[1,T]
```

$$
\begin{array}{llll}
S(1,0) & S(1,1) & S(1,2) & S(1,3) \\
\hline S(2,0) & S(2,1) & S(2,2) & S(2,3) \\
\hline S(3,0) & S(3,1) & S(3,2) & S(3,3) \\
S(4,0) & S(4,1) & S(4,2) & S(4,3)
\end{array}
$$

Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]}\leftarrow\mathrm{ True
    for }t\leftarrow1\mathrm{ to }T\mathrm{ :
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]\leftarrowTrue
        for t \leftarrow 1 to X[i]-1:
            S [ i , t ] \leftarrow S [ i + 1 , t ]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t]\veeS[i+1,t-X[i]]
    return S[1,T]
```

$$
X=[1,2,3], T=3
$$

```
S(1,0) S(1,1) S(1,2) S(1,3)
S(2,0) S(2,1) S(2,2) S(2,3)
S(3,0) S(3,1) S(3,2) S(3,3)
    T F F F
```

Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
    \(S[n+1,0] \leftarrow\) True
    for \(t \leftarrow 1\) to \(T\) :
        \(S[n+1, t] \leftarrow\) False
    for \(i \leftarrow n\) down to 1:
        \(S[i, 0] \leftarrow\) True
        for \(t \leftarrow 1\) to \(X[i]-1\) :
            \(S[i, t] \leftarrow S[i+1, t]\)
        for \(t \leftarrow X[i]\) to \(T\) :
            \(S[i, t] \leftarrow S[i+1, t] \vee S[i+1, t-X[i]]\)
    return \(S[1, T]\)
```

$$
X=[1,2,3], T=3
$$

neyathex[i]=3

| $S(1,0)$ | $S(1,1)$ | $S(1,2)$ | $S(1,3)$ | | |
|---|---|---|---|---|---|
| $S(2,0)$ | $S(2,1)$ | $S(2,2)$ | $S(2,3)$ |
| T | $S(3,1)$ | $S(3,2)$ | $S(3,3)$ |
| T | F | F | F |\quad| |
| :--- |

but still
fir the
table

Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]}\leftarrow\mathrm{ True
    for }t\leftarrow1\mathrm{ to }T\mathrm{ :
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S [ i , 0 ] \leftarrow T r u e
        for t}\leftarrow1\mathrm{ to }X[i]-1
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t]\veeS[i+1,t-X[i]]
    return S[1,T]
```


Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]\leftarrowTrue
    for t}\leftarrow1\mathrm{ to T:
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]}\leftarrow\mathrm{ True
        for t \leftarrow1 to X[i]-1:
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t]\veeS[i+1,t-X[i]]
    return S[1,T]
```

$$
X=[1,2,3], T=3
$$

Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
\[
S[n+1,0] \leftarrow \text { True }
\]
    S[n+1,0]}\leftarrow\mathrm{ True
\[
\text { for } t \leftarrow 1 \text { to } T:
\]
    for }t\leftarrow1\mathrm{ to }T\mathrm{ :
\[
S[n+1, t] \leftarrow \text { False }
\]
        S[n+1,t]\leftarrowFalse
\[
\text { for } i \leftarrow n \text { down to } 1 \text { : }
\]
    for i\leftarrown down to 1:
\[
S[i, 0] \leftarrow \text { True }
\]
        S[i,0]\leftarrowTrue
\[
\text { for } \mathrm{t} \leftarrow 1 \text { to } X[i]-1:
\]
        for t}\leftarrow1\mathrm{ to }X[i]-1
\[
S[i, t] \leftarrow S[i+1, t]
\]
            S[i,t]\leftarrowS[i+1,t]
\[
\text { for } t \leftarrow X[i] \text { to } T \text { : }
\]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t]\veeS[i+1,t-X[i]]
\[
S[i, t] \leftarrow S[i+1, t] \vee S[i+1, t-X[i]]
\]
\[
\text { return } S[1, T]
\]
    return S[1,T]
```

$$
X=[1,2,3], T=3
$$

Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]}\leftarrow\mathrm{ True
    for }t\leftarrow1\mathrm{ to }T\mathrm{ :
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]\leftarrowTrue
        for t}\leftarrow1\mathrm{ to }X[i]-1
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t]\veeS[i+1,t-X[i]]
    return S[1,T]
```

$$
X=[1,2,3], T=3
$$

Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]}\leftarrow\mathrm{ True
    for }t\leftarrow1\mathrm{ to }T\mathrm{ :
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]\leftarrowTrue
        for t}\leftarrow1\mathrm{ to }X[i]-1
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t]\veeS[i+1,t-X[i]]
    return S[1,T]
```

$$
X=[1,2,3], T=3
$$

Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]}\leftarrow\mathrm{ True
    for }t\leftarrow1\mathrm{ to }T\mathrm{ :
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]\leftarrowTrue
        for t}\leftarrow1\mathrm{ to }X[i]-1
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t]\veeS[i+1,t-X[i]]
    return S[1,T]
```

$$
X=[1,2,3], T=3
$$

Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]}\leftarrow\mathrm{ True
    for }t\leftarrow1\mathrm{ to }T\mathrm{ :
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]}\leftarrow\mathrm{ True
        for t}\leftarrow1\mathrm{ to }X[i]-1
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t]\veeS[i+1,t-X[i]]
    return S[1,T]
```

$$
X=[1,2,3], T=3
$$

Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]\leftarrowTrue
    for }t\leftarrow1\mathrm{ to T:
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]}\leftarrowT\mathrm{ True
        for t \leftarrow1 to X[i]-1:
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t]\veeS[i+1,t-X[i]}
    return S[1,T]
```


Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]}\leftarrow\mathrm{ True
    for }t\leftarrow1\mathrm{ to }T\mathrm{ :
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]}\leftarrowT\mp@code{True
        for t}\leftarrow1\mathrm{ to }X[i]-1
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t]\veeS[i+1,t-X[i]]
    return S[1,T]
```

$$
X=[1,2,3], T=3
$$

Since $S[1,3]$ checks $S[2,3]$ which is True, we know we have a solution!

Dynamic Programming Subset Sum Example

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]}\leftarrow\mathrm{ True
    for }t\leftarrow1\mathrm{ to }T\mathrm{ :
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]}\leftarrow Tru
        for t \leftarrow 1 to X[i]-1:
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t]\veeS[i+1,t-X[i]]
    return S[1,T]
```

$$
X=[1,2,3], T=3
$$

Since $S[1,3]$ checks $S[2,3]$ which is True, we know we have a solution!

Subset Sum Wrap

What are our

 subproblems?

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]\leftarrowTrue
    for t\leftarrow1 to T:
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]\leftarrowTrue
        for t \leftarrow1 to X[i]-1:
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t] \vee S[i+1,t-X[i]]
    return S[1,T]
```

What data structure can we use for memorization?

We can fill a 2 dimensional array with the following dimensions: $S[1 . . n+1,0 . . T]=\operatorname{SubSum}(i, t)$

Which subproblems depend on each other, and what evaluation order does this imply?
$\operatorname{SubSum}(i, t)$ can depend on $\operatorname{SubSum}(i+1, t)$ and $\operatorname{SubSum}(i+1, t-X[i])$. So we can start at the bottom of the table and work up.

Is FastSubsetSum always faster than the recursive version?

What are the space/time requirements?

Space: $O(n T)$
Time: $O(n T)$

Subset Sum Wrap

What are our

 subproblems?

What data structure can we use for memoization?

We can fill a 2 dimensional array with the following dimensions: $S[1 . . n+1,0 . . T]=\operatorname{SubSum}(i, t)$

Which subproblems depend on each other, and what evaluation order does this imply?
$\operatorname{SubSum}(i, t)$ can depend on $\operatorname{SubSum}(i+1, t)$ and $\operatorname{SubSum}(i+1, t-X[i])$. So we can start at the bottom of the table and work up.

```
FastSubsetSum(X[1..n], T):
    S[n+1,0]\leftarrowTrue
    for t}\leftarrow1\mathrm{ to }T\mathrm{ :
        S[n+1,t]\leftarrowFalse
    for i\leftarrown down to 1:
        S[i,0]\leftarrowTrue
        for t \leftarrow1 to X[i]-1:
            S[i,t]\leftarrowS[i+1,t]
        for }t\leftarrowX[i] to T
            S[i,t]\leftarrowS[i+1,t] \vee S[i+1,t-X[i]]
    return S[1,T]
```

What are the space/time requirements?

Time: $O(n T)$

Is FastSubsetSum always faster than the recursive version?

No! If $T \gg 2^{n}$, the recursive version is actually faster!

Edit Distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

Edit Distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

$$
\underline{\text { FOOD }} \rightarrow \text { MOODD } \rightarrow \text { MOND } \rightarrow \text { MONED } \rightarrow \text { MONEY }
$$

Edit Distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

$$
\underset{\text { FUOD }}{\underline{\text { FOOD }} \rightarrow \underset{\wedge}{\text { MOOD }} \rightarrow \text { MOND }} \rightarrow \text { MONED } \rightarrow \text { MONEY }
$$

Edit Distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

```
FOOD }->\mathrm{ MOOD }->\mathrm{ MOND M MONED }->\mathrm{ MONEY
```


Edit Distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

Edit Distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

Edit Distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

```
F O O D
M O N E Y
```


Edit Distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

Edit Distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

EditDistance (food, money) $=4$

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

| F | O | O | | D |
| :--- | :--- | :--- | :--- | :--- |
| M | O | N | E | Y |

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

What should our subproblems be?

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

| F | 0 | 0 | D |
| :--- | :--- | :--- | :--- |
| M | O | N | E |

What should our subproblems be?

- Imagine that we have this alignment representation for the optimal edit distance

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

| F | 0 | 0 | | D |
| :--- | :--- | :--- | :--- | :--- |
| M | 0 | N E | | |

What should our subproblems be?

- Imagine that we have this alignment representation for the optimal edit distance
- Remove the last column

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

| F | 0 | 0 | | D |
| :--- | :--- | :--- | :--- | :--- |
| M | 0 | N E | | |

What should our subproblems be?

- Imagine that we have this alignment representation for the optimal edit distance
- Remove the last column
- What must be true of the remaining prefixes?

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

| F | 0 | 0 | | D |
| :--- | :--- | :--- | :--- | :--- |
| M | 0 | N E | | |

What should our subproblems be?

- Imagine that we have this alignment representation for the optimal edit distance
- Remove the last column
- What must be true of the remaining prefixes?
- They must also be optimal!

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

For any two input strings $A[1 . . n]$ and
$B[1 . . m]$, let

| 1 | 2 | 3 | | 4 |
| :---: | :---: | :---: | :---: | :---: |
| F | 0 | 0 | | D |
| M | 0 | N | E | Y |
| 1 | 2 | 3 | 4 | 5 |

$$
B[1 . . m] \text {, let }
$$

$E \operatorname{dit}(i, j)$
denote the edit distance between
What should our subproblems be?

- Imagine that we have this alignment prefixes $A[1 . . i]$ and $B[1 . . j]$. We need to compute $\operatorname{Edit}(n, m)$. representation for the optimal edit distance
- Remove the last column
- What must be true of the remaining prefixes?
- They must also be optimal!

Formulating a recursive edit distance

The edit distance between two strings is the minimum number of insertions, deletions, and substitutions that will transform one string into the other.

What should our subproblems be?

- Imagine that we have this alignment

For any two input strings $A[1 . . n]$ and $B[1 . . m]$, let
$\operatorname{Edit}(i, j)$
denote the edit distance between prefixes $A[1 . . i]$ and $B[1 . . j]$. We need to compute $\operatorname{Edit}(n, m)$. representation for the optimal edit distance

- Remove the last column
- What must be true of the remaining prefixes?
- They must also be optimal!

Formulating a recursive edit distance

Each call to Edit (i, j) makes a decision about how to align the last column in the substring.
There are three possibilities:

```
A L G O R I T H M
A L T R U I S T I C
```


Formulating a recursive edit distance

Each call to Edit (i, j) makes a decision about how to align the last column in the substring.
There are three possibilities:

| A | L | G | 0 | R | | I | | T | H | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | L | | T | R | U | I | S | T | I | C |

1. Insertion

$\operatorname{Edit}(i, j-1)+1$
2. Deletion
3. Substitution

Formulating a recursive edit distance

Each call to Edit (i, j) makes a decision about how to align the last column in the substring.

| A | L | G | O | R | | I | | T | H | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | L | | T | R | U | I | S | T | I | C |

There are three possibilities:

Arbitrary Case

1. Insertion

$$
\operatorname{Edit}(i, j-1)+1
$$

2. Deletion

| ALGO | R |
| :---: | :--- |
| ALTRU | |

$$
\operatorname{Edit}(i-1, j)+1
$$

3. Substitution

Formulating a recursive edit distance

Each call to Edit (i,j)makes a decision about how to align the last column in the substring.

| A | L | G | 0 | R | | I | | T | H | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | L | | T | R | U | I | S | T | I | C |

There are three possibilities:

Arbitrary Case

1. Insertion

$$
\operatorname{Edit}(i, j-1)+1
$$

2. Deletion

| ALGO | R |
| :---: | :---: |
| ALTRU | |

$$
\operatorname{Edit}(i-1, j)+1
$$

3. Substitution

$$
\operatorname{Edit}(i-1, j-1)+1, \text { if } A[i] \neq B[j]
$$

| ALGO | R |
| :--- | :--- |
| ALTR | U |

$\operatorname{Edit}(i-1, j-1)$, if $A[i]=B[j]$

Formulating a recursive edit distance

Each call to $\operatorname{Edit}(i, j)$ makes a decision about how to align the last column in the substring.
There are three possibilities:

Arbitrary Case

1. Insertion

| ALGOR | |
| :---: | :---: |
| ALTR | U |

2. Deletion

| ARGO | R |
| :---: | :--- |
| ALTRU | |

$$
\operatorname{Edit}(i-1, j)+1
$$

3. Substitution

| ALSO | R |
| :--- | :--- |
| ALTR | U |

| ARGO | R |
| :---: | :---: |
| ALT | R |

$\operatorname{Edit}(i-1, j-1)+1$, if $A[i] \neq B[j]$
$E \operatorname{dit}(i-1, j-1)$, if $A[i]=B[j]$

sear

Base Case

$$
\operatorname{Edit}(i, j-1)+1
$$

$\operatorname{Edit}(i, 0)=i$ to delete characters from $B[0 . . i]$
$\operatorname{Edit}(0, j)=j$ to insert gaps in $A[0 . . j]$

Formulating a recursive edit distance

Each call to $E \operatorname{dit}(i, j)$ makes a decision about how to align the last column in the substring.
There are three possibilities:

$$
\operatorname{Edit}(i, j)= \begin{cases}i & \begin{array}{l}
\text { if } j=0 \\
j \\
\operatorname{if} i=0
\end{array} \\
\min \left\{\begin{array}{c}
\operatorname{Edit}(i, j-1)+1 \\
\operatorname{Edit}(i-1, j)+1 \\
\operatorname{Edit}(i-1, j-1)+[A[i] \neq B[j]]
\end{array}\right\} & \text { otherwise }\end{cases}
$$

Arbitrary Case

1. Insertion

| ALGOR | |
| :---: | :---: |
| ALTR | U |

2. Deletion

| ALGO | R |
| :---: | :---: |
| ALTRU | |

$$
\operatorname{Edit}(i-1, j)+1
$$

| ALGO | R |
| :---: | :---: |
| ALT | R |

$\operatorname{Edit}(i-1, j-1)+1$, if $A[i] \neq B[j]$
$\operatorname{Edit}(i-1, j-1)$, if $A[i]=B[j]$

Base Case

$E \operatorname{dit}(i, 0)=i$ to delete characters from $B[0 . . i]$
$\operatorname{Edit}(0, j)=j$ to insert gaps in $A[0 . . j]$
3. Substitution

| ALGO | R |
| :--- | :--- |
| ALTR | U |

Next Time

We will formulate a dynamic programming algorithm for Edit Distance and discuss the Knapsack Problem.

$$
\operatorname{Edit}(i, j)= \begin{cases}i & \left.\begin{array}{l}
\text { if } j=0 \\
j \\
\min \left\{\begin{array}{c}
\operatorname{Edit}(i, j-1)+1 \\
\operatorname{Edit}(i-1, j)+1 \\
E \operatorname{dit}(i-1, j-1)+[A[i] \neq B[j]]
\end{array}\right\}
\end{array}\right\} \begin{array}{l}
\text { otherwise }
\end{array}\end{cases}
$$

Wrap up

No new reading assignment (still chapter 3 of Erickson)

- If you didn't follow our Edit Distance discussion, read 3.7 before Monday!

Work on homework 2! Ask questions on Piazza.

Midterm next Weds 8PM - Fri 8PM.

- Topics will be everything we have done so far:
- Asymptotic analysis and Divide and Conquer (including recursion, backtracking, and dynamic programming)
- If there are things you have struggled with, strategize sooner rather than later about how you will review them before Wednesday!

Enjoy your weekend!

