
Lecture	9:	More	Dynamic	
Programming

Tim	LaRock
larock.t@northeastern.edu

bit.ly/cs3000syllabus



Business

• Homework	1	is	graded
• If	you	have	asked	for	clarification	and	haven’t	heard	back,	hold	tight!	I	am	
getting	to	it.

• Homework	2	due	Tuesday	night	at	midnight	Boston	time
• Solutions	will	be	released	8AM	Weds;	absolutely	no	late	submission	without	
prior	permission!

• Midterm	1	Wednesday	8PM	through	Friday	8PM



Homework	1



Homework	2

• Question	3:	Assume	you	have	a	function	IsMinimumLength()	that	tells	
you	whether	a	valid	chain	C	is	minimum	length	in	constant	time

• Question	4	adjusted	to	be	a	bit	easier
• Part	a:	Write	a	recurrence	for	Opt(i,j)

• More	to	come	on	this	today
• Part	b:	Describe	how	to	fill	a	dynamic	programming	table	for	Opt
• Part	c:	Write	in	pseudocode	how	to	fill	the	table



Putting	edit	distance	on	hold	for	1	class!

• We	came	up	with	a	dynamic	programming	solution	to	Subset	Sum
• We	found	a	recurrence	for	Edit	Distance,	but	we	still	need	to	develop	
a	dynamic	programming	solution

• But…



This	week

Today:
• Revist Subset	Sum	to	explain	𝑂𝑝𝑡(𝑖, 𝑗) solutions
• Introduce	and	solve	the	Knapsack	Problem

Tomorrow:	
• Find	a	dynamic	programming	solution	for	Edit	Distance	
• Wrap	up	dynamic	programming
• Introduce	basic	features	of	graphs	to	get	us	started	on	graph	algorithms

Wednesday:	
• First	half-ish:	Continue	with	graph	algorithms
• Second	half-ish:	Answers	to	student-submitted	questions	(form	to	be	sent	out	this	evening)

Thursday:
• No	class	while	midterm	exam	is	out



Subset	Sum	Recap

SubsetSum(X[1..n], i, T):
If T = 0:
return True

ElseIf T < 0 or i = 0:
return False

Else:
with ← SubsetSum(X, i-1, T – X[i]) 
wout ← SubsetSum(X, i-1, T)
return with OR wout

𝑇 𝑛 = 2𝑇 𝑛 − 1 + 𝑂 1 ≤ 𝑂(22)

We	are	given	a	set	of	𝑛 positive	integers	
𝑋 = 	 𝑥6,	𝑥7,	 … , 𝑥2 and	a	target	integer	
value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋

such	that	the	sum	of	the	elements	
∑ 𝑥< = 𝑇�
>?∈A .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	
such	a	Y exist?



Subset	Sum	Recap

FastSubsetSum(X[1..n], T):
𝑆 𝑛 + 1, 0 ← 𝑇𝑟𝑢𝑒
for 𝑡 ← 1 to 𝑇:
𝑆 𝑛 + 1, 𝑡 ← 𝐹𝑎𝑙𝑠𝑒

for i← 𝑛 down to 1:
𝑆 𝑖, 0 ← 𝑇𝑟𝑢𝑒
for t ← 1 to 𝑋 𝑖 − 1:
𝑆 𝑖, 𝑡 ← 𝑆[𝑖 + 1, 𝑡]

for 𝑡 ← 𝑋[𝑖] to 𝑇:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 + 1, 𝑡 	⋁ 	𝑆[𝑖 + 1, 𝑡 − 𝑋[𝑖]]�

�
return 𝑆 1, 𝑇

At	an	arbitrary	iteration	1 ≤ 𝑖 ≤ 𝑛 + 1 and	𝑡 ≤ 𝑇

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

𝑆𝑆(𝑖, 𝑡) =

𝑇𝑟𝑢𝑒																																																																											𝑖𝑓	𝑡 = 0
𝐹𝑎𝑙𝑠𝑒																																																																										𝑖𝑓	𝑖 > 𝑛

𝑆𝑢𝑏𝑆𝑢𝑚 𝑖 + 1, 𝑡 																																																									𝑖𝑓	𝑡 < 𝑋[𝑖]
𝑆𝑢𝑏𝑆𝑢𝑚 𝑖 + 1, 𝑡 	∨ 𝑆𝑢𝑏𝑆𝑢𝑚 𝑖 + 1, 𝑡 − 𝑋[𝑖] 				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

What	are	our	
subproblems?

We	can	fill	a	2	dimensional	array	
with	the	following	dimensions:

𝑆 1. . 𝑛 + 1, 0. . 𝑇 = 𝑆𝑢𝑏𝑆𝑢𝑚(𝑖, 𝑡)
Space:	𝑂 𝑛𝑇
Time:	𝑂(𝑛𝑇)

𝑆𝑢𝑏𝑆𝑢𝑚 𝑖, 𝑡 can	depend	on	
𝑆𝑢𝑏𝑆𝑢𝑚 𝑖 + 1, 𝑡 and	
𝑆𝑢𝑏𝑆𝑢𝑚 𝑖 + 1, 𝑡 − 𝑋[𝑖] .	So	
we	can	start	at	the	bottom	of	
the	table	and	work	up.	

Is	FastSubsetSum always faster	
than	the	recursive	version?

No!	If	𝑇 ≫ 22,	the	recursive	
version	is	actually	faster!



Subset	Sum	Recap

FastSubsetSum(X[1..n], T):
𝑆 𝑛 + 1, 0 ← 𝑇𝑟𝑢𝑒
for 𝑡 ← 1 to 𝑇:
𝑆 𝑛 + 1, 𝑡 ← 𝐹𝑎𝑙𝑠𝑒

for i← 𝑛 down to 1:
𝑆 𝑖, 0 ← 𝑇𝑟𝑢𝑒
for t ← 1 to 𝑋 𝑖 − 1:
𝑆 𝑖, 𝑡 ← 𝑆[𝑖 + 1, 𝑡]

for 𝑡 ← 𝑋[𝑖] to 𝑇:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 + 1, 𝑡 	⋁ 	𝑆[𝑖 + 1, 𝑡 − 𝑋[𝑖]]�

�
return 𝑆 1, 𝑇

At	an	arbitrary	iteration	1 ≤ 𝑖 ≤ 𝑛 + 1 and	𝑡 ≤ 𝑇

What	data	structure	
can	we	use	for	
memoization?

Which	subproblems
depend	on	each	other,	
and	what	evaluation	
order	does	this	imply?

What	are	the	
space/time	

requirements?

𝑆𝑆(𝑖, 𝑡) =

𝑇𝑟𝑢𝑒																																																																											𝑖𝑓	𝑡 = 0
𝐹𝑎𝑙𝑠𝑒																																																																										𝑖𝑓	𝑖 > 𝑛

𝑆𝑢𝑏𝑆𝑢𝑚 𝑖 + 1, 𝑡 																																																									𝑖𝑓	𝑡 < 𝑋[𝑖]
𝑆𝑢𝑏𝑆𝑢𝑚 𝑖 + 1, 𝑡 	∨ 𝑆𝑢𝑏𝑆𝑢𝑚 𝑖 + 1, 𝑡 − 𝑋[𝑖] 				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

What	are	our	
subproblems?

We	can	fill	a	2	dimensional	array	
with	the	following	dimensions:

𝑆 1. . 𝑛 + 1, 0. . 𝑇 = 𝑆𝑢𝑏𝑆𝑢𝑚(𝑖, 𝑡)
Space:	𝑂 𝑛𝑇
Time:	𝑂(𝑛𝑇)

𝑆𝑢𝑏𝑆𝑢𝑚 𝑖, 𝑡 can	depend	on	
𝑆𝑢𝑏𝑆𝑢𝑚 𝑖 + 1, 𝑡 and	
𝑆𝑢𝑏𝑆𝑢𝑚 𝑖 + 1, 𝑡 − 𝑋[𝑖] .	So	
we	can	start	at	the	bottom	of	
the	table	and	work	up.	

Today:	We	will	reformulate	this	
problem	in	terms	of	an	optimal	

solution 𝒪!

This	is	where	the	𝑂𝑝𝑡(𝑖, 𝑗)
notation	in	the	homework	
assignment	came	from.



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) formulation

Consider	an	optimal	solution	𝒪
• We	don’t	know	what	the	solution	is	yet,	or	

if	it	even	exists,	but	we	can	define	our	
problem	in	terms	of	it.	

For	each	item	in	the	set,	is	X i ∈ 𝒪?	Same	form	as	
before:	

• If	it	is	in	the	solution,	add	it	and	recurse
• If	it	is	not,	skip	it	and	recurse

Difference:	We	will	now	define	an	optimal	solution	
for	a	subproblem as:

We	are	given	a	set	of	𝑛 positive	integers	
𝑋 = 	 𝑥6,	𝑥7,	 … , 𝑥2 and	a	target	integer	
value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋

such	that	the	sum	of	the	elements	
∑ 𝑥< = 𝑇�
>?∈A .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	
such	a	Y exist?

𝑂𝑝𝑡 𝑖, 𝑤 = max
a
b𝑤c

�

c∈a



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) formulation
We	are	given	a	set	of	𝑛 positive	integers	
𝑋 = 	 𝑥6,	𝑥7,	 … , 𝑥2 and	a	target	integer	
value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋

such	that	the	sum	of	the	elements	
∑ 𝑥< = 𝑇�
>?∈A .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	
such	a	Y exist?

Consider	an	optimal	solution	𝒪
• We	don’t	know	what	the	solution	is	yet,	or	if	it	

even	exists,	but	we	can	define	our	problem	in	
terms	of	it.	

We	know	we	need	to	solve	the	problem	for	
intermediate	values	of	𝑖 and	𝑡.	

We	can	define	an	optimal	solution	for	a	subproblem
as:

Where	
• 𝑖 represents	the	element	under	consideration
• 𝑡 represents	a	subset	weight	𝑡 ≤ 𝑇 and	
• we	are	taking	the	maximum	over	subsets	that	

satisfy	∑ 𝑋[𝑗]�
c∈a ≤ 𝑡

𝑂𝑝𝑡 𝑖, 𝑡 = max
a
b𝑋[𝑗]
�

c∈a



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) formulation
We	are	given	a	set	of	𝑛 positive	integers	
𝑋 = 	 𝑥6,	𝑥7,	 … , 𝑥2 and	a	target	integer	
value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋

such	that	the	sum	of	the	elements	
∑ 𝑥< = 𝑇�
>?∈A .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	
such	a	Y exist?

Consider	an	optimal	solution	𝒪
• We	don’t	know	what	the	solution	is	yet,	or	if	it	

even	exists,	but	we	can	define	our	problem	in	
terms	of	it.	

We	know	we	need	to	solve	the	problem	for	
intermediate	values	of	𝑖 and	𝑡.	

We	can	define	an	optimal	solution	for	a	subproblem
as:

Where	
• 𝑖 represents	the	element	under	consideration
• 𝑡 represents	a	subset	weight	𝑡 ≤ 𝑇 and	
• we	are	taking	the	maximum	over	subsets	that	

satisfy	∑ 𝑋[𝑗]�
c∈a ≤ 𝑡

𝑂𝑝𝑡 𝑖, 𝑡 = max
a
b𝑋[𝑗]
�

c∈a



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) formulation
We	are	given	a	set	of	𝑛 positive	integers	
𝑋 = 	 𝑥6,	𝑥7,	 … , 𝑥2 and	a	target	integer	
value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋

such	that	the	sum	of	the	elements	
∑ 𝑥< = 𝑇�
>?∈A .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	
such	a	Y exist?

Consider	an	optimal	solution	𝒪
• We	don’t	know	what	the	solution	is	yet,	or	if	it	

even	exists,	but	we	can	define	our	problem	in	
terms	of	it.	

We	know	we	need	to	solve	the	problem	for	
intermediate	values	of	𝑖 and	𝑡.	

We	can	define	an	optimal	solution	for	a	subproblem
as:

Where	
• 𝑖 represents	the	element	under	consideration
• 𝑡 represents	a	subset	weight	𝑡 ≤ 𝑇 and	
• we	are	taking	the	maximum	over	subsets	that	

satisfy	∑ 𝑋[𝑗]�
c∈a ≤ 𝑡

𝑂𝑝𝑡 𝑖, 𝑡 = max
a
b𝑋[𝑗]
�

c∈a



Consider	an	optimal	solution	𝒪
• We	don’t	know	what	the	solution	is	yet,	or	if	it	

even	exists,	but	we	can	define	our	problem	in	
terms	of	it.	

We	know	we	need	to	solve	the	problem	for	
intermediate	values	of	𝑖 and	𝑡.	

We	can	define	an	optimal	solution	for	a	subproblem
as:

Where	
• 𝑖 represents	the	element	under	consideration
• 𝑡 represents	a	subset	weight	𝑡 ≤ 𝑇 and	
• we	are	taking	the	maximum	over	subsets	that	

satisfy	∑ 𝑋[𝑗]�
c∈a ≤ 𝑡

Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) formulation
We	are	given	a	set	of	𝑛 positive	integers	
𝑋 = 	 𝑥6,	𝑥7,	 … , 𝑥2 and	a	target	integer	
value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋

such	that	the	sum	of	the	elements	
∑ 𝑥< = 𝑇�
>?∈A .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	
such	a	Y exist?

T T T T

T F T T

T F F T

T F F F

Remember	our	old	friend	the	T/F	table…

𝑂𝑝𝑡 𝑖, 𝑡 = max
a
b𝑋[𝑗]
�

c∈a



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) formulation
We	are	given	a	set	of	𝑛 positive	integers	
𝑋 = 	 𝑥6,	𝑥7,	 … , 𝑥2 and	a	target	integer	
value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋

such	that	the	sum	of	the	elements	
∑ 𝑥< = 𝑇�
>?∈A .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	
such	a	Y exist?

Remember	our	old	friend	the	T/F	table…

…it	will	now	be	an	𝑂𝑝𝑡(𝑖, 𝑡) table!

Consider	an	optimal	solution	𝒪
• We	don’t	know	what	the	solution	is	yet,	or	if	it	

even	exists,	but	we	can	define	our	problem	in	
terms	of	it.	

We	know	we	need	to	solve	the	problem	for	
intermediate	values	of	𝑖 and	𝑡.	

We	can	define	an	optimal	solution	for	a	subproblem
as:

Where	
• 𝑖 represents	the	element	under	consideration
• 𝑡 represents	a	subset	weight	𝑡 ≤ 𝑇 and	
• we	are	taking	the	maximum	over	subsets	that	

satisfy	∑ 𝑋[𝑗]�
c∈a ≤ 𝑡

𝑂𝑝𝑡 𝑖, 𝑡 = max
a
b𝑋[𝑗]
�

c∈a

0 0 0 0
0 1 1 1
0 1 2 3
0 1 2 3



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) formulation

Where	
• 𝑖 represents	the	element	under	consideration
• 𝑡 represents	a	subset	weight	t ≤ 𝑇 and	
• we	are	taking	the	maximum	over	subsets	that	

satisfy	∑ 𝑋[𝑗]�
c∈a ≤ 𝑡

For	each	item	in	the	set,	is	X i ∈ 𝒪?:	
• If	𝑋 𝑖 ∉ 𝒪,	then	

𝑂𝑝𝑡 𝑖, 𝑇 = 𝑂𝑝𝑡(𝑖 − 1, 𝑇)
• If	X i ∈ 𝒪,	then	
𝑂𝑝𝑡 𝑖, 𝑇 = 𝑋 𝑖 + 	𝑂𝑝𝑡(𝑖 − 1, 𝑇 − 𝑋[𝑖])

We	are	given	a	set	of	𝑛 positive	integers	
𝑋 = 	 𝑥6,	𝑥7,	 … , 𝑥2 and	a	target	integer	
value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋

such	that	the	sum	of	the	elements	
∑ 𝑥< = 𝑇�
>?∈A .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	
such	a	Y exist?

𝑂𝑝𝑡 𝑖, 𝑡 = max
a
b𝑋[𝑗]
�

c∈a

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?



𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) formulation

Where	
• 𝑖 represents	the	element	under	consideration
• 𝑡 represents	a	subset	weight	t ≤ 𝑇 and	
• we	are	taking	the	maximum	over	subsets	that	

satisfy	∑ 𝑋[𝑗]�
c∈a ≤ 𝑡

For	each	item	in	the	set,	is	X i ∈ 𝒪?:	
• If	𝑋 𝑖 ∉ 𝒪,	then	

𝑂𝑝𝑡 𝑖, 𝑇 = 𝑂𝑝𝑡(𝑖 − 1, 𝑇)
• If	X i ∈ 𝒪,	then	
𝑂𝑝𝑡 𝑖, 𝑇 = 𝑋 𝑖 + 	𝑂𝑝𝑡(𝑖 − 1, 𝑇 − 𝑋[𝑖])

We	are	given	a	set	of	𝑛 positive	integers	
𝑋 = 	 𝑥6,	𝑥7,	 … , 𝑥2 and	a	target	integer	
value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋

such	that	the	sum	of	the	elements	
∑ 𝑥< = 𝑇�
>?∈A .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	
such	a	Y exist?

𝑂𝑝𝑡 𝑖, 𝑡 = max
a
b𝑋[𝑗]
�

c∈a

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?



𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) formulation

Where	
• 𝑖 represents	the	element	under	consideration
• 𝑡 represents	a	subset	weight	t ≤ 𝑇 and	
• we	are	taking	the	maximum	over	subsets	that	

satisfy	∑ 𝑋[𝑗]�
c∈a ≤ 𝑡

For	each	item	in	the	set,	is	X i ∈ 𝒪?:	
• If	𝑋 𝑖 ∉ 𝒪,	then	

𝑂𝑝𝑡 𝑖, 𝑇 = 𝑂𝑝𝑡(𝑖 − 1, 𝑇)
• If	X i ∈ 𝒪,	then	
𝑂𝑝𝑡 𝑖, 𝑇 = 𝑋 𝑖 + 	𝑂𝑝𝑡(𝑖 − 1, 𝑇 − 𝑋[𝑖])

We	are	given	a	set	of	𝑛 positive	integers	
𝑋 = 	 𝑥6,	𝑥7,	 … , 𝑥2 and	a	target	integer	
value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋

such	that	the	sum	of	the	elements	
∑ 𝑥< = 𝑇�
>?∈A .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	
such	a	Y exist?

𝑂𝑝𝑡 𝑖, 𝑡 = max
a
b𝑋[𝑗]
�

c∈a

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) formulation

Where	
• 𝑖 represents	the	element	under	consideration
• 𝑡 represents	a	subset	weight	t ≤ 𝑇 and	
• we	are	taking	the	maximum	over	subsets	that	

satisfy	∑ 𝑋[𝑗]�
c∈a ≤ 𝑡

For	each	item	in	the	set,	is	X i ∈ 𝒪?:	
• If	𝑋 𝑖 ∉ 𝒪,	then	

𝑂𝑝𝑡 𝑖, 𝑇 = 𝑂𝑝𝑡(𝑖 − 1, 𝑇)
• If	X i ∈ 𝒪,	then	
𝑂𝑝𝑡 𝑖, 𝑇 = 𝑋 𝑖 + 	𝑂𝑝𝑡(𝑖 − 1, 𝑇 − 𝑋[𝑖])

We	are	given	a	set	of	𝑛 positive	integers	
𝑋 = 	 𝑥6,	𝑥7,	 … , 𝑥2 and	a	target	integer	
value	𝑇.	We	want	to	find	a	subset	Y ⊆ 𝑋

such	that	the	sum	of	the	elements	
∑ 𝑥< = 𝑇�
>?∈A .

Our	problem:	For	a	given	𝑇 and	𝑋,	does	
such	a	Y exist?

𝑂𝑝𝑡 𝑖, 𝑡 = max
a
b𝑋[𝑗]
�

c∈a

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) formulation

Where	
• 𝑖 represents	the	element	under	consideration
• 𝑡 represents	a	subset	weight	t ≤ 𝑇 and	
• we	are	taking	the	maximum	over	subsets	that	

satisfy	∑ 𝑋[𝑗]�
c∈a ≤ 𝑡

For	each	item	in	the	set,	is	X i ∈ 𝒪?:	
• If	𝑋 𝑖 ∉ 𝒪,	then	

𝑂𝑝𝑡 𝑖, 𝑇 = 𝑂𝑝𝑡(𝑖 − 1, 𝑇)
• If	X i ∈ 𝒪,	then	
𝑂𝑝𝑡 𝑖, 𝑇 = 𝑋 𝑖 + 	𝑂𝑝𝑡(𝑖 − 1, 𝑇 − 𝑋[𝑖])

𝑂𝑝𝑡 𝑖, 𝑡 = max
a
b𝑋[𝑗]
�

c∈a

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

𝑛

𝑇

Main	differences:
• Instead	of	𝑆(𝑖, 𝑡) (boolean)	we	have	replaced	

with	𝑂𝑝𝑡 𝑖, 𝑡 (integer)
• Instead	of	𝑛 + 1 → 1,	we	are	filling	from	0 → 𝑛

𝑆(1,0) 𝑆(1,1) 𝑆(1,2) 𝑆(1,3)
𝑆(2,0) 𝑆(2,1) 𝑆(2,2) 𝑆(2,3)
𝑆(3,0) 𝑆(3,1) 𝑆(3,2) 𝑆(3,3)
𝑆(4,0) 𝑆(4,1) 𝑆(4,2) 𝑆(4,3)

𝑛

𝑇

Previous	Solution

New	Solution

𝑂𝑝𝑡(0,0) 𝑂𝑝𝑡(0,1) 𝑂𝑝𝑡(0,2) 𝑂𝑝𝑡(0,3)
𝑂𝑝𝑡(1,0) 𝑂𝑝𝑡(1,1) 𝑂𝑝𝑡(1,2) 𝑂𝑝𝑡(2,3)
𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

𝑛

𝑇

Main	differences:
• Instead	of	𝑆(𝑖, 𝑡) (boolean)	we	have	replaced	

with	𝑂𝑝𝑡 𝑖, 𝑡 (integer)
• Instead	of	𝑛 + 1 → 1,	we	are	filling	from	0 → 𝑛

𝑆(1,0) 𝑆(1,1) 𝑆(1,2) 𝑆(1,3)
𝑆(2,0) 𝑆(2,1) 𝑆(2,2) 𝑆(2,3)
𝑆(3,0) 𝑆(3,1) 𝑆(3,2) 𝑆(3,3)
𝑆(4,0) 𝑆(4,1) 𝑆(4,2) 𝑆(4,3)

𝑛

𝑇

Previous	Solution

New	Solution

𝑂𝑝𝑡(0,0) 𝑂𝑝𝑡(0,1) 𝑂𝑝𝑡(0,2) 𝑂𝑝𝑡(0,3)
𝑂𝑝𝑡(1,0) 𝑂𝑝𝑡(1,1) 𝑂𝑝𝑡(1,2) 𝑂𝑝𝑡(2,3)
𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

𝑂𝑝𝑡(0,0) 𝑂𝑝𝑡(0,1) 𝑂𝑝𝑡(0,2) 𝑂𝑝𝑡(0,3)
𝑂𝑝𝑡(1,0) 𝑂𝑝𝑡(1,1) 𝑂𝑝𝑡(1,2) 𝑂𝑝𝑡(2,3)
𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑛

𝑇

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
𝑂𝑝𝑡(1,0) 𝑂𝑝𝑡(1,1) 𝑂𝑝𝑡(1,2) 𝑂𝑝𝑡(2,3)
𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
𝑂𝑝𝑡(1,0) 𝑂𝑝𝑡(1,1) 𝑂𝑝𝑡(1,2) 𝑂𝑝𝑡(2,3)
𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=1

t=0

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 𝑂𝑝𝑡(1,1) 𝑂𝑝𝑡(1,2) 𝑂𝑝𝑡(2,3)

𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=1

t=0

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 𝑂𝑝𝑡(1,1) 𝑂𝑝𝑡(1,2) 𝑂𝑝𝑡(2,3)

𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=1

t=1

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 𝑂𝑝𝑡(1,1) 𝑂𝑝𝑡(1,2) 𝑂𝑝𝑡(2,3)

𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=1

t=1

max	(𝑆 0, 1 = 0, 1 + 𝑆 0, 1 − 1 = 0 = 1)

max 0, 1 + 𝑆[0,0] = 1 = 1

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 𝑂𝑝𝑡(1,2) 𝑂𝑝𝑡(2,3)

𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=1

t=1

max	(𝑆 0, 1 = 0, 1 + 𝑆 0, 1 − 1 = 0 = 1)

max 0, 1 + 𝑆[0,0] = 1 = 1

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 𝑂𝑝𝑡(1,2) 𝑂𝑝𝑡(2,3)

𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=1

t=2

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 𝑂𝑝𝑡(1,2) 𝑂𝑝𝑡(2,3)

𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=1

t=2

max	(𝑆 0, 2 = 0, 1 + 𝑆 0, 2 − 1 = 1 = 1)

max 0, 1 + 0 = 1 = 1

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 1 𝑂𝑝𝑡(2,3)

𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=1

t=2

max	(𝑆 0, 2 = 0, 1 + 𝑆 0, 2 − 1 = 1 = 1)

max 0, 1 + 0 = 1 = 1

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 1 𝑂𝑝𝑡(2,3)

𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=1

t=3

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 1 1

𝑂𝑝𝑡(2,0) 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)
𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=1

t=3

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 1 1
0 𝑂𝑝𝑡(2,1) 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)

𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=2

t=0

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 1 1
0 1 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)

𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=2

t=1

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 1 1
0 1 𝑂𝑝𝑡(2,2) 𝑂𝑝𝑡(3,3)

𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=2

t=2

max	(𝑆 1, 2 = 1, 2 + 𝑆 1, 2 − 2 = 0 = 2)

max 1, 2 = 2

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 1 1
0 1 2 𝑂𝑝𝑡(3,3)

𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=2

t=2

max	(𝑆 1, 2 = 1, 2 + 𝑆 1, 2 − 2 = 0 = 2)

max 1, 2 = 2

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 1 1
0 1 2 𝑂𝑝𝑡(3,3)

𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=2

t=3

max	(𝑆 1, 3 = 1, 2 + 𝑆 1, 3 − 2 = 1 = 3)

max 1, 3 = 3

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 1 1
0 1 2 3

𝑂𝑝𝑡(3,0) 𝑂𝑝𝑡(3,1) 𝑂𝑝𝑡(3,2) 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=2

t=3

max	(𝑆 1, 3 = 1, 2 + 𝑆 1, 3 − 2 = 1 = 3)

max 1, 3 = 3

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 1 1
0 1 2 3
0 1 2 𝑂𝑝𝑡(3,3)

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=3

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	𝑂𝑝𝑡(𝑖, 𝑡) example

What	is	our	recurrence	for	𝑂𝑝𝑡(𝑖, 𝑡)?

0 0 0 0
0 1 1 1
0 1 2 3
0 1 2 3

𝑋	 = 1,2,3 , 𝑇 = 3
OptSubsetSum(X[1..n], T):
for 𝑡 ← 0 to 𝑇:
𝑆 0, 𝑡 ← 0

for i ← 1 to 𝑛:
for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:
𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i

Else:
𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝑋 𝑖 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]

return 𝑆 𝑛, 𝑇

i=3

max	(𝑆 2, 3 = 3, 3 + 𝑆 2, 3 − 3 = 0 = 3)

max 3, 3 = 3

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																					𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑋 𝑖 + 	𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Subset	Sum	Wrap	(take	2)

Two	different	solutions	get	us	to	the	same	result
• First	solution	used	boolean 𝑆𝑢𝑏𝑠𝑒𝑡𝑆𝑢𝑚(𝑖, 𝑡) to	indicate	whether	a	solution	
existed	for	values	𝑋[1. . 𝑖] and	sum	𝑡 ≤ 𝑇.	
• If	𝑆 1, 𝑇 = 𝑇𝑟𝑢𝑒,	we	know	there	is	a	soultion.

• Second	solution	found	integer	solutions	𝑂𝑝𝑡(𝑖, 𝑡) for	the	same	subproblems.	
• If	𝑆 𝑛, 𝑇 = 𝑇 we	know	there	is	a	solution.

Many	problems	can	be	viewed	from	multiple	directions	in	this	way
• If	both	are	possible,	choosing	is	a	matter	of	preference
• Erickson	tends	to	use	first	method
• Tardos &	Kleinberg	use	second

• Either	are	acceptable	in	the	class	(unless	otherwise	specified)	as	long	as	the	
solution	is	correct



Subset	Sum	Wrap	(take	2)

Two	different	solutions	get	us	to	the	same	result
• First	solution	used	boolean 𝑆𝑢𝑏𝑠𝑒𝑡𝑆𝑢𝑚(𝑖, 𝑡) to	indicate	whether	a	solution	
existed	for	values	𝑋[1. . 𝑖] and	sum	𝑡 ≤ 𝑇.	
• If	𝑆 1, 𝑇 = 𝑇𝑟𝑢𝑒,	we	know	there	is	a	soultion.

• Second	solution	found	integer	solutions	𝑂𝑝𝑡(𝑖, 𝑡) for	the	same	subproblems.	
• If	𝑆 𝑛, 𝑇 = 𝑇 we	know	there	is	a	solution.

Many	problems	can	be	viewed	from	multiple	directions	in	this	way
• If	both	are	possible,	choosing	is	a	matter	of	preference
• Erickson	tends	to	use	first	method
• Tardos &	Kleinberg	use	second

• Either	are	acceptable	in	the	class	(unless	otherwise	specified)	as	long	as	the	
solution	is	correct



Subset	Sum	Wrap	(take	2)

Two	different	solutions	get	us	to	the	same	result
• First	solution	used	boolean 𝑆𝑢𝑏𝑠𝑒𝑡𝑆𝑢𝑚(𝑖, 𝑡) to	indicate	whether	a	solution	
existed	for	values	𝑋[1. . 𝑖] and	sum	𝑡 ≤ 𝑇.	
• If	𝑆 1, 𝑇 = 𝑇𝑟𝑢𝑒,	we	know	there	is	a	soultion.

• Second	solution	found	integer	solutions	𝑂𝑝𝑡(𝑖, 𝑡) for	the	same	subproblems.	
• If	𝑆 𝑛, 𝑇 = 𝑇 we	know	there	is	a	solution.

Many	problems	can	be	viewed	from	multiple	directions	in	this	way
• If	both	are	possible,	choosing	is	a	matter	of	preference
• Erickson	tends	to	use	first	method
• Tardos &	Kleinberg	use	second

• Either	are	acceptable	in	the	class	(unless	otherwise	specified)	as	long	as	the	
solution	is	correct



Subset	Sum	Wrap	(take	2)

Two	different	solutions	get	us	to	the	same	result
• First	solution	used	boolean 𝑆𝑢𝑏𝑠𝑒𝑡𝑆𝑢𝑚(𝑖, 𝑡) to	indicate	whether	a	solution	
existed	for	values	𝑋[1. . 𝑖] and	sum	𝑡 ≤ 𝑇.	
• If	𝑆 1, 𝑇 = 𝑇𝑟𝑢𝑒,	we	know	there	is	a	soultion.

• Second	solution	found	integer	solutions	𝑂𝑝𝑡(𝑖, 𝑡) for	the	same	subproblems.	
• If	𝑆 𝑛, 𝑇 = 𝑇 we	know	there	is	a	solution.

Many	problems	can	be	viewed	from	multiple	directions	in	this	way
• If	both	are	possible,	choosing	is	a	matter	of	preference
• Erickson	tends	to	use	first	method
• Tardos &	Kleinberg	use	second

• Either	are	acceptable	in	the	class	(unless	otherwise	specified)	as	long	as	the	
solution	is	correct



Extending	Subset	Sum	to	the	Knapsack	Problem



Knapsack	Problem

Subset	Sum	is	a	special	case	of	a	more	general	problem	called	the	
knapsack	problem

In	the	knapsack	problem,	items	have	both	a	weight 𝑋 𝑖 and	a	value 𝑣[𝑖]



Knapsack	Problem

Subset	Sum	is	a	special	case	of	a	more	general	problem	called	the	
knapsack	problem

In	the	knapsack	problem,	items	have	both	a	weight 𝑋 𝑖 and	a	value 𝑣[𝑖]

Imagine	you	are	preparing	for	a	long	backpacking	trip.	You	have	a	strict	
limit	𝑊 on	the	amount	of	weight	you	can	carry	in	your	pack	and	you	want	
to	choose	a	subset	𝑆 of	items	to	bring	that	maximizes	the	total	value	V =
∑ 𝑣[𝑗]�
c∈a



Knapsack	Problem

Subset	Sum	is	a	special	case	of	a	more	general	problem	called	the	
knapsack	problem

In	the	knapsack	problem,	items	have	both	a	weight 𝑋 𝑖 and	a	value 𝑣[𝑖]

Imagine	you	are	preparing	for	a	long	backpacking	trip.	You	have	a	strict	
limit	𝑊 on	the	amount	of	weight	you	can	carry	in	your	pack	and	you	want	
to	choose	a	subset	𝑆 of	items	to	bring	that	maximizes	the	total	value	V =
∑ 𝑣[𝑗]�
c∈a



Knapsack	Problem

Subset	Sum	is	a	special	case	of	a	more	general	problem	called	the	
knapsack	problem

In	the	knapsack	problem,	items	have	both	a	weight 𝑋 𝑖 and	a	value 𝑣[𝑖]

Imagine	you	are	preparing	for	a	long	backpacking	trip.	You	have	a	strict	
limit	𝑊 on	the	amount	of	weight	you	can	carry	in	your	pack	and	you	want	
to	choose	a	subset	𝑆 of	items	to	bring	that	maximizes	the	total	value	V =
∑ 𝑣[𝑗]�
c∈a



Knapsack	Problem

We	want	a	procedure	that	will prioritize	packing	only what	we	need	to	survive!

For	example,	in	most	cases	it	will	probably	leave	our	industrial	strength	hair	
dryer	behind…



Knapsack	Problem

We	want	a	procedure	that	will prioritize	packing	only what	we	need	to	survive!

For	example,	in	most	cases	it	will	probably	leave	our	industrial	strength	hair	
dryer	behind…



Knapsack	Problem

We	want	to	find	a	subset	of	items	𝑆 that	maximizes	∑ 𝑣[𝑗]�
c∈a with	the	same	constraint	that	∑ 𝑋 𝑗 ≤ 𝑇�

c∈a .	

Before,	we	were	trying	to	maximize	the	weight	of	the	subset	with	no	other	constraint.	We	assumed	that	our	
summation	was	over	sets	𝑆 that	satisfied	the	weight	constraint.	

Given	that	we	already	know	the	subsets	𝑆 are	constrained	to	those	that	satisfy	the	weight	constraint,	we	can	make	a	
very	minor	modification	to	solve	the	knapsack	problem!

Same	question	as	before:	for	each	item	in	the	set,	is	X i ∈ 𝒪?:	

• If	𝑋 𝑖 ∉ 𝒪,	then	

• 𝑂𝑝𝑡 𝑖, 𝑇 = 𝑂𝑝𝑡(𝑖 − 1, 𝑇)

• If	X i ∈ 𝒪,	then	

• 𝑂𝑝𝑡 𝑖, 𝑇 = 𝑣[𝑖] + 	𝑂𝑝𝑡(𝑖 − 1, 𝑇 − 𝑋[𝑖])



Knapsack	Problem

We	want	to	find	a	subset	of	items	𝑆 that	maximizes	∑ 𝑣[𝑗]�
c∈a with	the	same	constraint	that	∑ 𝑋 𝑗 ≤ 𝑇�

c∈a .	

Before,	we	were	trying	to	maximize	the	weight of	the	subset	with	no	other	constraint.	We	assumed	that	our	
summation	was	over	sets	𝑆 that	satisfied	the	weight	constraint.	

Given	that	we	already	know	the	subsets	𝑆 are	constrained	to	those	that	satisfy	the	weight	constraint,	we	can	make	a	
very	minor	modification	to	solve	the	knapsack	problem!

Same	question	as	before:	for	each	item	in	the	set,	is	X i ∈ 𝒪?:	

• If	𝑋 𝑖 ∉ 𝒪,	then	

• 𝑂𝑝𝑡 𝑖, 𝑇 = 𝑂𝑝𝑡(𝑖 − 1, 𝑇)

• If	X i ∈ 𝒪,	then	

• 𝑂𝑝𝑡 𝑖, 𝑇 = 𝑣[𝑖] + 	𝑂𝑝𝑡(𝑖 − 1, 𝑇 − 𝑋[𝑖])



Knapsack	Problem

We	want	to	find	a	subset	of	items	𝑆 that	maximizes	∑ 𝑣[𝑗]�
c∈a with	the	same	constraint	that	∑ 𝑋 𝑗 ≤ 𝑇�

c∈a .	

Before,	we	were	trying	to	maximize	the	weight of	the	subset	with	no	other	constraint.	We	assumed	that	our	
summation	was	over	sets	𝑆 that	satisfied	the	weight	constraint.	

Keeping	that	assumption,	we	already	know	the	subsets	𝑆 are	constrained	to	those	that	satisfy	the	weight	constraint,	
so	we	can	make	a	very	minor	modification	to	solve	the	knapsack	problem!

Same	question	as	before:	for	each	item	in	the	set,	is	X i ∈ 𝒪?:	

• If	𝑋 𝑖 ∉ 𝒪,	then	

• 𝑂𝑝𝑡 𝑖, 𝑇 = 𝑂𝑝𝑡(𝑖 − 1, 𝑇)

• If	X i ∈ 𝒪,	then	

• 𝑂𝑝𝑡 𝑖, 𝑇 = 𝑣[𝑖] + 	𝑂𝑝𝑡(𝑖 − 1, 𝑇 − 𝑋[𝑖])



𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																				𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑣 𝑖 + 𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Knapsack	Problem

We	want	to	find	a	subset	of	items	𝑆 that	maximizes	∑ 𝑣[𝑗]�
c∈a with	the	same	constraint	that	∑ 𝑋 𝑗 ≤ 𝑇�

c∈a .	

Before,	we	were	trying	to	maximize	the	weight of	the	subset	with	no	other	constraint.	We	assumed	that	our	
summation	was	over	sets	𝑆 that	satisfied	the	weight	constraint.	

Keeping	that	assumption,	we	already	know	the	subsets	𝑆 are	constrained	to	those	that	satisfy	the	weight	constraint,	
so	we	can	make	a	very	minor	modification	to	solve	the	knapsack	problem!

Same	question	as	before:	for	each	item	in	the	set,	is	X i ∈ 𝒪?:	

• If	𝑋 𝑖 ∉ 𝒪,	then	

• 𝑂𝑝𝑡 𝑖, 𝑇 = 𝑂𝑝𝑡(𝑖 − 1, 𝑇)

• If	X i ∈ 𝒪,	then	

• 𝑂𝑝𝑡 𝑖, 𝑇 = 𝑣[𝑖] + 	𝑂𝑝𝑡(𝑖 − 1, 𝑇 − 𝑋[𝑖])



Knapsack	Problem

We	want	to	find	a	subset	of	items	𝑆 that	maximizes	∑ 𝑣[𝑗]�
c∈a with	the	same	constraint	that	∑ 𝑋 𝑗 ≤ 𝑇�

c∈a .	

Before,	we	were	trying	to	maximize	the	weight of	the	subset	with	no	other	constraint.	We	assumed	that	our	
summation	was	over	sets	𝑆 that	satisfied	the	weight	constraint.	

Keeping	that	assumption,	we	already	know	the	subsets	𝑆 are	constrained	to	those	that	satisfy	the	weight	constraint,	
so	we	can	make	a	very	minor	modification	to	solve	the	knapsack	problem!

Same	question	as	before:	for	each	item	in	the	set,	is	X i ∈ 𝒪?:	

• If	𝑋 𝑖 ∉ 𝒪,	then	

• 𝑂𝑝𝑡 𝑖, 𝑇 = 𝑂𝑝𝑡(𝑖 − 1, 𝑇)

• If	X i ∈ 𝒪,	then	

• 𝑂𝑝𝑡 𝑖, 𝑇 = 𝑣[𝑖] + 	𝑂𝑝𝑡(𝑖 − 1, 𝑇 − 𝑋[𝑖])

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																				𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑣 𝑖 + 𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Knapsack	Problem

We	want	to	find	a	subset	of	items	𝑆 that	maximizes	∑ 𝑣[𝑗]�
c∈a with	the	same	constraint	that	∑ 𝑋 𝑗 ≤ 𝑇�

c∈a .	

Before,	we	were	trying	to	maximize	the	weight of	the	subset	with	no	other	constraint.	We	assumed	that	our	
summation	was	over	sets	𝑆 that	satisfied	the	weight	constraint.	

Keeping	that	assumption,	we	already	know	the	subsets	𝑆 are	constrained	to	those	that	satisfy	the	weight	constraint,	
so	we	can	make	a	very	minor	modification	to	solve	the	knapsack	problem!

Same	question	as	before:	for	each	item	in	the	set,	is	X i ∈ 𝒪?:	

• If	𝑋 𝑖 ∉ 𝒪,	then	

• 𝑂𝑝𝑡 𝑖, 𝑇 = 𝑂𝑝𝑡(𝑖 − 1, 𝑇)

• If	X i ∈ 𝒪,	then	

• 𝑂𝑝𝑡 𝑖, 𝑇 = 𝑣[𝑖] + 	𝑂𝑝𝑡(𝑖 − 1, 𝑇 − 𝑋[𝑖])
We	can	use	the	same	algorithm	to	solve	this!

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																				𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑣 𝑖 + 𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Knapsack	Problem	Wrap

We	want	to	find	a	subset	of	items	𝑆 that	maximizes	∑ 𝑣[𝑗]�
c∈a with	the	same	constraint	that	∑ 𝑋 𝑗 ≤ 𝑇�

c∈a .	

Before,	we	were	trying	to	maximize	the	weight of	the	subset	with	no	other	constraint.	We	assumed	that	our	
summation	was	over	sets	𝑆 that	satisfied	the	weight	constraint.	

Keeping	that	assumption,	we	already	know	the	subsets	𝑆 are	constrained	to	those	that	satisfy	the	weight	constraint,	
so	we	can	make	a	very	minor	modification	to	solve	the	knapsack	problem!

We	can	use	the	same	algorithm	to	solve	this!

𝑂𝑝𝑡(𝑖, 𝑡) = f𝑂𝑝𝑡 𝑖 − 1, 𝑡 																																																																				𝑖𝑓	𝑡 < 𝑋 𝑖
max	(𝑂𝑝𝑡 𝑖 − 1, 𝑡 , 𝑣 𝑖 + 𝑂𝑝𝑡 𝑖 − 1, 𝑡 − 𝑋 𝑖 )			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

OptKnapsack(X[1..n], v[1..n], T):
for 𝑡 ← 0 to 𝑇:

𝑆 0, 𝑡 ← 0
for i ← 1 to 𝑛:

for t ← 0 to 𝑇:
if 𝑡 < 𝑋[𝑖]:

𝑆 𝑖, 𝑡 ← 𝑆 𝑖 − 1, 𝑡 // Exclude item i
Else:

𝑆 𝑖, 𝑡 ← max	(𝑆 𝑖 − 	1, 𝑡 , 𝒗 𝒊 + 𝑆[𝑖 − 1, 𝑡	 − 𝑋 𝑖 ]
return 𝑆 𝑛, 𝑇



Wrap-up	of	today

Subset	Sum	can	be	solved	in	(at	least)	two	ways	using	dynamic	
programming

Knapsack	Problem	is	a	more	general	version	of	Subset	Sum	that	adds	a	
notion	of	value to	each	element

Knapsack	can	be	solved	in	almost	the	exact	same	way	as	Subset	Sum,	
just	maximizing	value	rather	than	weight



This	week

Tomorrow:	
• Find	a	dynamic	programming	solution	for	Edit	Distance	
• Wrap	up	dynamic	programming
• Introduce	basic	features	of	graphs	to	get	us	started	on	graph	algorithms

Wednesday:	
• First	half-ish:	Continue	with	graph	algorithms
• Second	half-ish:	Answers	to	student-submitted	questions	(form	to	be	sent	
out	this	evening)

Thursday:
• No	class	while	midterm	exam	is	out


