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Business

• Homework	2	due	tonight	at	midnight	Boston	time
• Solutions	will	be	released	8AM	Weds;	absolutely	no	late	submission	without	
prior	permission!
• Submission	now	on	Gradescope (see	Piazza	for	info)

• Midterm	1	Wednesday	8PM	through	Friday	8PM
• Questions	answered	during	lecture	Weds	afternoon



Homework	2	Reminders

• Question	3:	Assume	you	have	a	function	IsMinimumLength()	that	tells	
you	whether	a	valid	chain	C	is	minimum	length	in	constant	time

• Question	4	adjusted	to	be	a	bit	easier
• Part	a:	Write	a	recurrence	for	Opt(i,j)
• Part	b:	Describe	how	to	fill	a	dynamic	programming	table	for	Opt
• Part	c:	Write	in	pseudocode	how	to	fill	the	table



This	week

Today:	
• Find	a	dynamic	programming	solution	for	Edit	Distance	
• Wrap	up	dynamic	programming
• Introduce	basic	features	of	graphs	to	get	us	started	on	graph	algorithms

Tomorrow:	
• First	half-ish:	Continue	with	graph	algorithms
• Second	half-ish:	Answers	to	student-submitted	questions

• Form	link	sent	out	on	Piazza

Thursday:
• No	class	while	midterm	exam	is	out



Edit	Distance

Last	week,	we	found	a	recurrence	for	Edit	Distance:

…but	we	still	need	to	develop	a	dynamic	programming	solution!



Edit	Distance	Recap

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.
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Edit	Distance	Recap

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

Alternative:	Align	the	strings	and	count	the	differences

!"#$%#&$'()* food,	money = 4



Formulating	a	recursive	edit	distance

Each	call	to	!"#$(#, 7)makes	a	
decision	about	how	to	align	the	last	

column	in	the	substring.
There	are	three	possibilities:

1. Insertion

2. Deletion

3. Substitution

!"#$ #, 7 − 1 + 1

!"#$ # − 1, 7 + 1

!"#$ # − 1, 7 − 1 + 1,	if	< # ≠ >[7]

!"#$ # − 1, 7 − 1 ,	if	< # = >[7]

Arbitrary	Case Base	Case

!"#$ 0, 7 = 7 to	insert	gaps	in	<[0. . 7]

!"#$ #, 0 = # to	delete	characters	from	>[0. . #]



Formulating	a	recursive	edit	distance

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

1					2				3					 4

1					2				3					4				5

Decisions	here	do	not	
depend	on	what	was	
already	computed!

What	should	our	subproblems be?
• Imagine	that	we	have	this	alignment	

representation	for	the	optimal	edit	distance
• Remove	the	last	column	
• What	must	be	true	of	the	remaining	prefixes?
• They	must	also	be	optimal!

For	any	two	input	strings	<[1. . (] and	
>[1. . C],	let	

!"#$(#, 7)

denote	the	edit	distance	between	
prefixes	<[1. . #] and	> 1. . 7 .	We	
need	to	compute	!"#$((,C).
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Edit	Distance	Recap

The	edit	distance between	two	strings	is	the	minimum	number	of	
insertions,	deletions,	and	substitutions	that	will	transform	one	string	
into	the	other.

0	if	<[#] = >[7] (no	substitution	is	necessary!)
1	if	A[i] ≠ >[7]



Edit	Distance	Dynamic	Programming

We	have	our	subproblems,	so	what	
data	structure	can	we	use	for	

memoization?

We	can	use	a	two	dimensional	array:
!"#$[0. . C, 0. . (]
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Edit	Distance	Dynamic	Programming

Data	Structure?
Two	dimensional	array:
!"#$[0. . (, 0. . C]

What	order	should	we	fill	
the	array	in?

Top	(# = 7 = 0)	to	bottom	
(# = (, 7 = C).



Edit	Distance	Dynamic	Programming

Data	Structure?
Two	dimensional	array:
!"#$[0. . (, 0. . C]

What	order	should	we	fill	
the	array	in?

Top	(# = 7 = 0)	to	bottom	
(# = (, 7 = C).

Edit(<[1. . (], >[1. . C]):
for j ← 0 to C:

H 0, 7 ← 7
for # ← 1 to (:

H #, 0 ← #
for 7 ← 1 to C:

#(&*I$ ← !"#$ #, 7 − 1 + 1
"*J*$* ← !"#$ # − 1, 7 + 1

if < # = >[7]:
&KL ← !"#$[# − 1, 7 − 1]

else:
&KL ← !"#$ # − 1, 7 − 1 + 1

!"#$ #, 7 = min	(#(&*I$, "*J*$*, &KL)	
return !"#$[(,C]



Edit	Distance	Example

Data	Structure?
Two	dimensional	array:
!"#$[0. . (, 0. . C]

What	order	should	we	fill	
the	array	in?

Top	(# = 7 = 0)	to	bottom	
(# = (, 7 = C).

Edit(<[1. . (], >[1. . C]):
for j ← 0 to C:

H 0, 7 ← 7
for # ← 1 to (:

H #, 0 ← #
for 7 ← 1 to C:

#(&*I$ ← !"#$ #, 7 − 1 + 1
"*J*$* ← !"#$ # − 1, 7 + 1

if < # = >[7]:
&KL ← !"#$[# − 1, 7 − 1]

else:
&KL ← !"#$ # − 1, 7 − 1 + 1

!"#$ #, 7 = min	(#(&*I$, "*J*$*, &KL)	
return !"#$[(,C]



Data	Structure?
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m o n e y
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Data	Structure?
Two	dimensional	array:
!"#$[0. . (, 0. . C]

What	order	should	we	fill	
the	array	in?

Top	(# = 7 = 0)	to	bottom	
(# = (, 7 = C).

Edit(<[1. . (], >[1. . C]):
for j ← 0 to C:

H 0, 7 ← 7
for # ← 1 to (:

H #, 0 ← #
for 7 ← 1 to C:

#(&*I$ ← !"#$ #, 7 − 1 + 1
"*J*$* ← !"#$ # − 1, 7 + 1

if < # = >[7]:
&KL ← !"#$[# − 1, 7 − 1]

else:
&KL ← !"#$ # − 1, 7 − 1 + 1

!"#$ #, 7 = min	(#(&*I$, "*J*$*, &KL)	
return !"#$[(,C]

7 = 0
# = 0

f o o d

m o n e y

Edit	Distance	Example



Data	Structure?
Two	dimensional	array:
!"#$[0. . (, 0. . C]

What	order	should	we	fill	
the	array	in?

Top	(# = 7 = 0)	to	bottom	
(# = (, 7 = C).

Edit(<[1. . (], >[1. . C]):
for j ← 0 to C:

H 0, 7 ← 7
for # ← 1 to (:
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for 7 ← 1 to C:

#(&*I$ ← !"#$ #, 7 − 1 + 1
"*J*$* ← !"#$ # − 1, 7 + 1

if < # = >[7]:
&KL ← !"#$[# − 1, 7 − 1]

else:
&KL ← !"#$ # − 1, 7 − 1 + 1

!"#$ #, 7 = min	(#(&*I$, "*J*$*, &KL)	
return !"#$[(,C]

Edit	Distance

Finally:	What	is	the	running	
time	and	space	requirement	

of	this	algorithm?
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Data	Structure?
Two	dimensional	array:
!"#$[0. . (, 0. . C]

What	order	should	we	fill	
the	array	in?

Top	(# = 7 = 0)	to	bottom	
(# = (, 7 = C).

Edit(<[1. . (], >[1. . C]):
for j ← 0 to C:

H 0, 7 ← 7
for # ← 1 to (:

H #, 0 ← #
for 7 ← 1 to C:

#(&*I$ ← !"#$ #, 7 − 1 + 1
"*J*$* ← !"#$ # − 1, 7 + 1

if < # = >[7]:
&KL ← !"#$[# − 1, 7 − 1]

else:
&KL ← !"#$ # − 1, 7 − 1 + 1

!"#$ #, 7 = min	(#(&*I$, "*J*$*, &KL)	
return !"#$[(,C]

Edit	Distance	Wrap
Running	time	
and	space	

requirements?
P((C)

As	usual,	we:
• Specified	our	problem	in	terms	of	solutions	to	
smaller	subproblems

• Found	a	data	structure	to	store	solutions	to	
the	subproblems

• Filled	the	data	structure	in	a	smart	way	to	
avoid	recomputing any	solutions

• The	running	time	and	space	requirements	
were	immediately	clear	from	the	way	we	
filled	the	data	structure



Clarification:	Top	down	Vs.	Bottom	up

Consider	the	following	two	statements:
1. To	ace	the	midterm	exam,	I	will	practice	some	divide	and	conquer	

problems	on	the	homework,	and	to	solve	the	practice	problems	I	
first	need	to	attend	the	lecture	to	learn	about	divide	and	conquer.	

2. I	will	attend	the	lecture	to	learn	about	divide	and	conquer,	then	I	
will	practice	some	problems	on	the	homework,	then	I	will	ace	the	
midterm	exam.

They	say	the	same	thing,	but	the	first	is	“top	down”	and	the	second	is	
“bottom	up”!



Clarification:	Top	down	Vs.	Bottom	up

In	algorithms:
• Top	down	is	memoization

• We	discussed	for	Fibonacci	numbers
• In	this	case,	your	solution	still	”looks	recursive”,	but	every	call	either	fills	an	entry	in	
the	table	or	uses	the	table	to	get	a	next	solution

• Bottom	up	is	also	called	“tabulation”	
• It	usually	corresponds	to	starting	at	the	base	case	and	building	every	subsequent	
solution	from	there.

Observation:	A		tradeoff	between	the	two	is	that	tabulation	is	often	
conceptually	simpler	to	implement,	but	memoization is	easier	to	think	about	
if	you	already	have	a	full	recursive	solution.	

Key	point:	The	result	on	a	given	input	should	be	equivalent	for	our	purposes!



Dynamic	Programming	Wrap
• Recursion	is	often	convenient	for	solving	problems,	but	it	can	result	in	a	lot	of	
redundant	computation	that	makes	recursive	algorithms	very	slow
• Dynamic	programming	is	a	technique	to	“transform”	recursive	problems	in	to	
iterative	problems
• Define	subproblems recursively
• Determine	a	suitable	data	structure	(we	only	studied	arrays	so	far,	but	others	are	possible)
• Determine	the	dependencies	between	subproblems,	which	suggests	the	order	in	which	they	
should	be	evaluated
• Order	may	be	top-down	(memoize)	or	bottom-up	(tabulate)

• Write	down	the	pseudocode	for	the	algorithm	and	evaluate	runtime/space	requirements

• Dynamic	programming	is	not	always	faster	for	all	inputs!
• It	might	compute	a	solution	to	every	possible	subproblem,	even	those	that	are	not	directly	
used	to	compute	the	output!

• Dynamic	programming	is	more	than	filling	tables	(see	discussion	in	Erickson)
• But	in	practice	it	is largely	about	filling	tables



Graphs
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Graphs
A	graph Q = (R, !) consists	of	
• vertices	S ∈ R and	
• edges	* ∈ !,	indicating	with	two	vertices	K, S are	

connected

A	graph	is:	
• directed if	the	vertices	in	each	edge	are	ordered
• If	we	are	being	precise,	we	say	“the	edge	from	K

to	S”
• K, S ∈ ! ⇏ S, K ∈ !

• undirected if	its	edges	are	not	ordered.	
• “the	edge	between	K and	S”
• K, S ∈ ! ⇒ S, K ∈ !



Graphs	“vs”	Networks
Graphs	and	Networks	are	often	used	interchangeably

A	graph	is	a	mathematical	(topological)	object	defined	
on	the	previous	slide

A	network	is	a	concept	referring	to	“things	relating	to	
other	things”	and	networks	are	almost	always	studied	
and	represented	as	graphs

“Networks	are	graphs	with	meaning”

We	will	almost	always	study	graphs	in	this	class	since	
their	interpretation	is	often	not	important	to	the	
algorithms	we	are	developing



I	study	networks	for	a	living

More	on	my	website	and:	https://www.networkscienceinstitute.org/



Graphs
A	graph Q = (R, !) consists	of	
• vertices	S ∈ R and	
• edges	* ∈ !,	indicating	with	two	vertices	K, S are	

connected

A	graph	is:	
• directed if	the	vertices	in	each	edge	are	ordered
• If	we	are	being	precise,	we	say	“the	edge	from	K

to	S”
• K, S ∈ ! ⇏ S, K ∈ !

• undirected if	its	edges	are	not	ordered.	
• “the	edge	between	K and	S”
• K, S ∈ ! ⇒ S, K ∈ !

We	will	often	refer	to	vertices	
as	nodes and	may	also	refer	to	
edges	as	links.	Consider	these	
interchangeable!



Graphs
A	graph Q = (R, !) consists	of	
• vertices	S ∈ R and	
• edges	* ∈ !,	indicating	with	two	vertices	K, S are	

connected

A	graph	is:	
• directed if	the	vertices	in	each	edge	are	ordered
• If	we	are	being	precise,	we	say	“the	edge	from	K

to	S”
• K, S ∈ ! ⇏ S, K ∈ !

• undirected if	its	edges	are	not	ordered.	
• “the	edge	between	K and	S”
• K, S ∈ ! ⇒ S, K ∈ !

We	will	often	refer	to	vertices	
as	nodes and	may	also	refer	to	
edges	as	links.	Consider	these	
interchangeable!

Am	I	a	vertex
or	a	node? Why	not	

both?



Paths	through	graphs

A	path W from	vertex	K to	vertex	S through	a	graph	is	
an	ordered	sequence	of	consectuive edges	from	!:

W	 = { K,YZ , YZ, Y[ , … , Y]^Z, S }

A	graph Q = (R, !) is	connected	if	for	every	pair	of	
nodes	K and	S there	is	a	path from	K to	S.

In	a	directed	graph,	there	must	be	both	a	path	from	K
to	S and	from	S to	K.



Much	more	to	come	on	graphs!

Graph	traversal

Finding	shortest	paths

Minimum	spanning	trees

Flow	algorithms



This	week

Tomorrow:	
• First	half-ish:	Start	graph	algorithms	in	earnest
• Second	half-ish:	Answers	to	student-submitted	questions
• Form	link	sent	out	on	Piazza

Thursday:
• No	class	while	midterm	exam	is	out

Next	Monday:
• No	class	due	to	Memorial	Day


