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Business

• Homework	2	deadline	has	passed
• Solutions	released	on	Canvas	as	of	this	morning
• Will	be	graded	by	early	next	week,	please	be	patient

• Do	not	try	to	grade	yourself	in	detail
• Do	not	ask	us	“how	many	points	will	I	get	for…”	
• Just	wait	and	you	can	ask	for	clarification/modification	after	grading	is	
done!

• Midterm	1	to	be	released	TONIGHT	8PM	and	due	on	Friday	
8PM	(Boston	times)
• Some	review	questions	answered	today!



This	week

Today:	
• First	half-ish:	Continue	with	graph	algorithms
• Second	half-ish:	Answers	to	student-submitted	questions
• Form	link	sent	out	on	Piazza

Thursday:
• No	class	while	midterm	exam	is	out
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Midterm	basic	info

Reminder:	
• Absolutely	NO	collaboration	of	any	kind	or	use	of	the	internet	to	find	solutions	is	allowed	
• You	can	use	the	Erickson	book	or	the	CLR	book,	as	well	as	the	lectures,	slides,	and	any	notes	
you	have	taken

Topics:
• Asymptotic	order	of	growth
• Recurrence	relations
• Proof	by	induction
• Recursive	algorithms
• Dynamic	programming

If	you	understand	the	solutions	to	the	homework	problems	and	have	followed	
along	with	the	lectures,	you	will	do	fine!



Midterm	basic	info

You	should	direct	any	midterm	related	questions	to	Piazza
• Ask	all	questions	privately	to	all	of	the	instructors
• If	we	think	the	answer	is	relevant	for	everyone,	we	will	make	it	public	or	write	
it	in	a	note.	
• You	should	not	publicly	post	anything	about	the	exam	anywhere,	including	on	
Piazza.

We	will	also	be	holding	office	hours	as	scheduled,	however	do	not	
expect	nearly	as	many	hints	as	we	give	for	the	homework	assignments!
• We	are	likely	only	going	to	answer	clarifying	questions
• Ask	clarifying	questions	on	Piazza	BEFORE	attending	office	hours

• Often	writing	out	your	question	helps	you	answer	it	yourself!



Format	of	Today’s	Review

You	have	submit	questions	over	the	last	few	days	via	a	Google	Form

I	have	aggregated	your	questions	and	chosen	some	problems	to	go	
over

As	we	are	going	over	the	problems,	you	can	ask	me	questions	in	the	
chat	to	help	clarify

If	we	run	in	to	a	“Tim	doesn’t	have	a	good	answer”	type	situation,	I	will	
post	a	Piazza	note	after	lecture	with	a	better	answer



Constant	time

When	we	say	an	operation	takes	“constant	time”,	we	literally	mean	there	
is	some	constant	! that	does	not	depend	on	" that	describes	the	number	
of	instructions	it	takes	to	do	that	operation.	We	write	it	as	# 1 .



Constant	time

https://web.ist.utl.pt/~fabio.ferreira/material/asa/clrs.pdf
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“Recurrences”:	what	do	words	mean?
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“Recurrences”:	what	do	words	mean?

When	we	are	describing	a	solution	to	a	problem	in	terms	of	
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This	is	a	
“recurrence	
relation”



Running	time	of	recursive	algorithms

To	get	the	running	time	of	a	recursive	algorithm,	we	write	a	recurrence	
relation	describing	the	time	to	run	the	algorithm	on	an	input	of	size	"
in	terms	of	the	running	time	on	inputs	smaller	than	".



Running	time	of	recursive	algorithms

To	get	the	running	time	of	a	recursive	algorithm,	we	write	a	recurrence	
relation	describing	the	time	to	run	the	algorithm	on	an	input	of	size	"
in	terms	of	the	running	time	on	inputs	smaller	than	".

Let’s	look	back	at	how	we	wrote	the	recurrence	relations	for	binary	
search	and	merge	sort.



Binary	Search	Recurrence	Relation

StartSearch(A,t):
// A[1:n] sorted in ascending order
Return Search(A,1,n,t)

Search(A,ℓ,r,t):
If(ℓ > r): return FALSE

m ← ℓ + P0ℓ
Q

If(A[m] = t): return m
ElseIf(A[m] > t): return Search(A,ℓ,m-1,t)
Else: return Search(A,m+1,r,t)

What	does	the	recurrence	relation	look	like	for	binary	search?



MergeSort:	Runtime	Analysis

Let’s	write	down	a	recurrence	relation that	describes	the	runtime:



Difference	between	the	two

& " = & "
2 + # 1

& " = & "
2 + #(")



Solving	Recurrence	Relations

3	Methods:

1. Master	theorem	(if	applicable)

2. Writing	a	few	values	à guess	and	check

3. Recursion	Trees



Master	Theorem

• Recipe	for	recurrences	of	the	form:
• & " = R ⋅ & " T⁄ + V"W

• Three	cases:
• R

TW > 1 :		& " = Θ "YZ[T R

• R
TW = 1 :		& " = Θ "W log "

• R
TW < 1 :		& " = Θ "W

Binary	Search:

T(n)	=	T(/Q)	+O(1)

T(n)	=	1T(/Q)	+	n
0

1
24 = 1

So	
& " = Θ "_ log "

and	we	get
& " = Θ log "

Note	that	the	theorem	does	not	apply	to	our	MOMSelect recurrence:
T(n)	=	T(b/14)	+	T(

/
c)	+	O(n)



Solving	& " = 2& " − 1 + 1
& " = 2& " − 1 + 1,	

& 0 = 0
& 1 = 2& 0 + 1 = 1

& 2 = 2& 1 + 1 = 2 + 1 = 3

& 3 = 2 ⋅ 3 + 1 = 7

& 4 = 2 ⋅ 7 + 1 = 15

& 5 = 2 ⋅ 15 + 1 = 31
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There	is	a	pattern	here!

We	can	use	it	to	“guess”	
the	running	time.

What	is	our	guess?

Now	we	need	to	prove	it!
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Proving	& " = 2& " − 1 + 1 = #(2/)
& " = 2& " − 1 + 1,	

& 0 = 0
& " = 2& " − 1 + 1 ≤ !2/ + 1

& " + 1 = 	2& " + 1 − 1 + 1 ≤ !2/i1 + 1

2& " ≤ !2/i1
2 ⋅ 2/! ≤ !2/i1
2/i1 ≤ 2/i1

(for	some	constant	!)Assume	for	induction	that

We	will	show	that

We	have

By	the	inductive	hypothesis
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Recursion	Tree:	MOMSelect Running	Time

What	is	a	recurrence	relation	for	
MOMSelect?	

T(n)	=	T(Selection)	+	T(MOM)	+	f(ops	per	step)

MOMSelect(A[1..n], k):
If n <= 25:
return median(A)

Else:
mom ← MOM(A[1..n])
r← Partition(A, mom)

If k < r:
Return MOMSelect(A[1..r], k)

ElseIf k > r:
Return MOMSelect(A[r+1..n], k-r)

Else:
Return A[r]



Recursion	Tree
T(n)	=	T(b/14) +	T(

/
c) +	O(n)

Since	the	work	at	each	level	is	decreasing	exponentially,	the	O(n)	term	dominates!

49"
100

"

7"
10

"
5

"
25

7"
50

7"
50



Proof	by	induction
T(n)	=	T(b/14) +	T(

/
c) +	O(n)

T(1)	=	1

We	want	to	show	that	

& b/
14 + & /

c 	+ 	# " ≤ # " ,		meaning

& b/
14 + & /

c 	+ " ≤ 	V" (for	some	V)

by	induction,	we	have

V 7"10 + V
"
5 + "

Pulling	out	",	we	get
" V 7

10 + V
1
5 + 1	

" V k
14 + 1 ≤ 	V"
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Proof	by	induction
T(n)	=	T(b/14) +	T(

/
c) +	O(n)

T(1)	=	1

We	want	to	show	that	

& b/
14 + & /

c 	+ 	# " ≤ # " ,		meaning
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1
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" V k
14 + 1

≤ 	V"

For	which	values	of	C?

V 9
10 + 1 ≤ 	V

9V + 10 ≤ 10V
V ≥ 10

(as	long	as	V ≥ 10)	



Reporting	running	times:	tight	vs.	loose	
bounds
• Usually	in	this	class	it	should	be	pretty	clear	which	bounds	are	
appropriate	from	context

• For	recursive	algorithms,	if	you	write	down	a	recurrence	relation,	you	
should	be	able	to	find	a	bound	for	it

• If	you	think	there	is	a	tighter	bound	than	the	one	you’ve	written,	you	
should	try	to	prove	it	
• But	you	don’t	want	to	be	doing	original	research,	so	keep	it	simple!



Backtracking

• So	far,	we	have	seen	cases	where	the	next	recursive	call	is	clear
• In	MergeSort,	we	need	both	left	and	right	subarrays	to	be	sorted

• In	MOMSelect and	BinarySearch,	we	guarantee	the	value	we	are	looking	for	is		
in	a		specific	subarray

• What	if	we	can’t	tell	which	decision	to	make?

• Enter	backtracking:	When	we	need	to	make	a	decision,	try	one	small	
step	in	all	directions	and	evaluate	all	outcomes.



N	Queens

Problem	statement:	Given	an	nxn dimensional	chessboard,	place	n
queens	on	the	board	such	that	none	can	attack	each	other.

Given	an	arbitrary	n,	how	can	we	decide	where	to	place	queens?

Idea:	Incrementally	build	
a	solution	by	placing	one	

queen	at	a	time!



N	Queens
Idea:	Incrementally	build	a	solution	by	placing	one	queen	at	a	time!

PlaceQueens(Q[1..n], r):
If r = n+1:
print Q[1..n]

Else:
for {	 ← 	1	to n:
legal ← True
for -	 ← 1	to	r − 1:

if(Q[i]=j) or 
(Q[i]=j+r-i) or 
(Q[i] = j – r):
legal ← False

if legal:
Q[r]← j
PlaceQueens(Q[1..n], r+1)



N	Queens
Idea:	Incrementally	build	a	solution	by	placing	one	queen	at	a	time!

PlaceQueens(Q[1..n], r):
If r = n+1:
print Q[1..n]

Else:
for {	 ← 	1	to n:

Q[r] = j
if CheckLegal(Q[1..r]):
PlaceQueens(Q[1..n], r+1)



Backtracking	pattern
Idea:	Incrementally	build	a	solution	by	placing	one	queen	at	a	time!

• Appropriate	when	a	sequence	of	
incremental	decisions	can	enumerate	
solutions
• Solution	is	often	itself	a	sequence,	e.g.	
Q[1..n]	is	a	sequence	of	queens	placed	in	
rows	1..n

• Exactly	1	decision	is	made	at	every	step
• We	usually	need	some	information	about	
previous	decisions,	but	this	should	be	as	
small	as	possible	

• Problem	is	solved	by	recursive	brute	
force,	meaning	we	do	not	“prune”	
decisions	that	are	obviously	bad	(leaves	
in	the	tree)



Proof	of	correctness	for	dynamic	
programming

We	prove	a	dynamic	programming	algorithm	is	correct	by	showing	that	
the	recursive	specification	is	correct	by	induction.	
• If	it	is	easier	for	you	to	think	through,	you	can	write	the	recursive algorithm	in	
pseudocode	and	prove	it	from	there	(since	they	are	equivalent)

If	we	know	the	recursive	specification	is	correct,	then	it	is	
straightforward	to	explain	that	the	iterative	algorithm	is	also	correct,	
since	all	it	does	is	realize	the	recursive	specification!



General	Notes	and	Strategies

• I	am	not	trying	to	trick	you,	some	questions	have	simple	answers

• Recall	what	we	have	already	done	and	start	thinking	from	there

• Make	sure	you	understand	the	problem	before	you	start	working	on	the	
solution

• If	you	are	feeling	frustrated,	ask	a	question	and/or	take	a	break!	

• Please	sleep.	You	will	not	do	better	if	you	pull	an	all-nighter	and	there	are	
no	points	for	“most	time	spent	staring	at	blank	page”	



Wrap	Up

Good	luck!


