
Lecture	12:	Graph	
Algorithms

Tim	LaRock
larock.t@northeastern.edu

bit.ly/cs3000syllabus

Business

Homework	2

Midterm

Homework	3

Homework	2

• Grades	released	earlier	– overall	good	work!	
• Median:	34.75
• Mean:	32.38
• Histogram	below

• Request	regrades	directly	on	gradescope!	
• You	can	also	email	me,	but	gradescope is	much	better	and	likely	to	be	faster!

• Quite	a	few	no	submissions	and	partial	submissions	– if	this	was	a	mistake	or	
miscommunication,	you	need	to	let	me	know	ASAP!!
• I	will	try	to	be	accommodating,	but	it	is	your	responsibility	to	make	sure	you	turn	things	in	correctly!

Score

Frequency

Midterm:	Some	high	level	stuff
Overall	from	initial	grading	it	seems	like	people	did	well!

• We	are	aiming	to	have	your	grades	by	the	end	of	the	week.	Thank	you	for	your	patience!

Pseudocode:	high	level,	abstract	description	of	an	algorithm
• Focus	on	readability	and	helping	understand	the	algorithm
• Someone	reading	it	should	be	able	to	implement	it	in	any	language	without	knowing	any	
other	language	
• translation	should	be	englishà implementation	language,	not	implementation	

language1àimplementation	language2,	since	that	requires	knowing	language1	which	defeats	the	
purpose!

• No	strict	syntax	– when	faced	with	options,	choose	the	clearest	and	most	concise	that	you	an	
think	of!

• NOT	code

Recursive	specification	=	Algorithm	or	recursive	pseudocode
Recurrence	relation	=	Runtime	calculation	like	T(n)		=	T(n/a)	+	O(f(n))

Fibonacci	Numbers:	Recurrence	Relation

𝑓" #
0																							𝑖𝑓	𝑛 = 0
1																							𝑖𝑓	𝑛 = 1

𝑓"*+ + 𝑓"*-								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:

return 0
ElseIf 𝑛 = 1:

return 1
Else:

return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

What	does	the	recurrence	relation	𝑇(𝑛) look	like?	

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 1
𝑇 0 = 1, 𝑇 1 = 1

class	fibonacci	
{	
static	int	fib(int	n)	
{	
if	(n	<=	1)	
return	n;	

return	fib(n-1)	+	fib(n-2);	
}	

}

Not	pseudocode!

Homework	3:	Graphs	’n	stuff

• Will	be	released	after	class	
• Due	next	Monday	June	1st at	Midnight	Boston	time	on	Gradescope
• No	more	canvas	submissions!

• I	really	tried	to	make	sure	this	one	will	be	less	time	consuming!

Graphs:	what	are	they?

Graphs:	what	are	they?

Graphs:	what	are	they?

Undirected	

Directed	

Graphs
A	graph 𝐺 = (𝑉, 𝐸) consists	of	
• vertices	𝑣 ∈ 𝑉 and	
• edges	𝑒 ∈ 𝐸,	indicating	two	vertices	𝑢, 𝑣 are	

connected

A	graph	is:	
• directed if	the	vertices	in	each	edge	are	ordered
• If	we	are	being	precise,	we	say	“the	edge	from	𝑢

to	𝑣”
• 𝑢, 𝑣 ∈ 𝐸 ⇏ 𝑣, 𝑢 ∈ 𝐸

• undirected if	its	edges	are	not	ordered.	
• “the	edge	between	𝑢 and	𝑣”
• 𝑢, 𝑣 ∈ 𝐸 ⇒ 𝑣, 𝑢 ∈ 𝐸

We	will	often	refer	to	
vertices as	nodes and	to	
edges as	links.	Consider	
these	interchangeable!

Am	I	a	vertex
or	a	node?

Why	not	
both?

𝑛 = |𝑉|,	number	of	nodes
𝑚 = |𝐸|,	number	of	edges

Question

Assume	we	have	a	directed	graph	𝐺 = 𝑉, 𝐸 that	is	
simple,	meaning	there	is	at	most	one	of	each	possible	
edge	and	no	self-loops.

What	is	the	maximum	size	of	the	set	of	edges	𝐸?	

What	about	in	an	undirected	graph?

Undirected	

Directed	

Proof	by	contradiction

Given	a	simple	directed	graph	𝐺 = (𝑉, 𝐸) with	𝑛 = |𝑉|
nodes,	we	want	to	prove	that	the	maximum	size	of	the	
edge	set	𝐸 is	 E = 	𝑛 ⋅ (𝑛 − 1).

Assume	for	contradiction	that	we	have	a	graph	with	
𝐸 > 𝑛 ⋅ (𝑛 − 1).	This	implies	that	there	is	some	node	
𝑢 with	more	than	(𝑛 − 1) neighbors.	Since	there	are	
only	𝑛 nodes	in	𝐺,	this	implies	that	either	𝑢 connects	
to	some	node	twice,	or	it	connects	to	itself.	But	we	
have	assumed	that	𝐺 is	simple.	Contradiction!	

Proof	by	contradiction

Given	a	simple	directed	graph	𝐺 = (𝑉, 𝐸) with	𝑛 = |𝑉|
nodes,	we	want	to	prove	that	the	maximum	size	of	the	
edge	set	𝐸 is	 E = 	𝑛 ⋅ (𝑛 − 1).

Assume	for	contradiction	that	we	have	a	graph	with	
𝐸 > 𝑛 ⋅ (𝑛 − 1).	This	implies	that	there	is	some	node	
𝑢 with	more	than	(𝑛 − 1) neighbors.	Since	there	are	
only	𝑛 nodes	in	𝐺,	this	implies	that	either	𝑢 connects	
to	some	node	twice,	or	it	connects	to	itself.	But	we	
have	assumed	that	𝐺 is	simple.	Contradiction!	

Proof	by	contradiction

Given	a	simple	directed	graph	𝐺 = (𝑉, 𝐸) with	𝑛 = |𝑉|
nodes,	we	want	to	prove	that	the	maximum	size	of	the	
edge	set	𝐸 is	 E = 	𝑛 ⋅ (𝑛 − 1).

Assume	for	contradiction	that	we	have	a	graph	with	
𝐸 > 𝑛 ⋅ (𝑛 − 1).	This	implies	that	there	is	some	node	
𝑢 with	more	than	(𝑛 − 1) neighbors.	Since	there	are	
only	𝑛 nodes	in	𝐺,	this	implies	that	either	𝑢 connects	
to	some	node	twice,	or	it	connects	to	itself.	But	we	
have	assumed	that	𝐺 is	simple.	Contradiction!	

Proof	by	contradiction

Given	a	simple	directed	graph	𝐺 = (𝑉, 𝐸) with	𝑛 = |𝑉|
nodes,	we	want	to	prove	that	the	maximum	size	of	the	
edge	set	𝐸 is	 E = 	𝑛 ⋅ (𝑛 − 1).

Assume	for	contradiction	that	we	have	a	graph	with	
𝐸 > 𝑛 ⋅ (𝑛 − 1).	This	implies	that	there	is	some	node	
𝑢 with	more	than	(𝑛 − 1) neighbors.	Since	there	are	
only	𝑛 nodes	in	𝐺,	this	implies	that	either	𝑢 connects	
to	some	node	twice,	or	it	connects	to	itself.	But	we	
have	assumed	that	𝐺 is	simple.	Contradiction!	

Proof	by	contradiction

Given	a	simple	directed	graph	𝐺 = (𝑉, 𝐸) with	𝑛 = |𝑉|
nodes,	we	want	to	prove	that	the	maximum	size	of	the	
edge	set	𝐸 is	 E = 	𝑛 ⋅ (𝑛 − 1).

Assume	for	contradiction	that	we	have	a	graph	with	
𝐸 > 𝑛 ⋅ (𝑛 − 1).	This	implies	that	there	is	some	node	
𝑢 with	more	than	(𝑛 − 1) neighbors.	Since	there	are	
only	𝑛 nodes	in	𝐺,	this	implies	that	either	𝑢 connects	
to	some	node	twice,	or	it	connects	to	itself.	But	we	
have	assumed	that	𝐺 is	simple.	Contradiction!	

Proof	by	contradiction	steps

1. State	the	claim	and	all	assumptions
• Given	a	simple	directed	graph 𝐺 = (𝑉, 𝐸) with	

𝒏 = |𝑽| nodes,	we	want	to	prove	that	the	
maximum	size	of	the	edge	set	𝑬 is	 𝐄 = 	𝒏 ⋅
(𝒏 − 𝟏).

2. Assume	we	have	an	example	where	it	is	not	true
• Assume	for	contradiction	that	we	have	a	graph	

with	 𝑬 > 𝒏 ⋅ (𝒏 − 𝟏).
3. Show	that	this	cannot	be	the	case	given	the	

assumptions	we	made
• This	implies	that	there	is	some	node	𝑢 with	

more	than	(𝑛 − 1) neighbors…But	we	have	
assumed	that	𝐺 is	simple.	Contradiction!

Proof	by	contradiction	steps

1. State	the	claim	and	all	assumptions
• Given	a	simple	directed	graph 𝐺 = (𝑉, 𝐸) with	

𝒏 = |𝑽| nodes,	we	want	to	prove	that	the	
maximum	size	of	the	edge	set	𝑬 is	 𝐄 = 	𝒏 ⋅
(𝒏 − 𝟏).

2. Assume	we	have	an	example	where	it	is	not	true
• Assume	for	contradiction	that	we	have	a	graph	

with	 𝑬 > 𝒏 ⋅ (𝒏 − 𝟏).
3. Show	that	this	cannot	be	the	case	given	the	

assumptions	we	made
• This	implies	that	there	is	some	node	𝑢 with	

more	than	(𝑛 − 1) neighbors…But	we	have	
assumed	that	𝐺 is	simple.	Contradiction!

Proof	by	contradiction	steps

1. State	the	claim	and	all	assumptions
• Given	a	simple	directed	graph 𝐺 = (𝑉, 𝐸) with	

𝒏 = |𝑽| nodes,	we	want	to	prove	that	the	
maximum	size	of	the	edge	set	𝑬 is	 𝐄 = 	𝒏 ⋅
(𝒏 − 𝟏).

2. Assume	we	have	an	example	where	it	is	not	true
• Assume	for	contradiction	that	we	have	a	graph	

with	 𝑬 > 𝒏 ⋅ (𝒏 − 𝟏).
3. Show	that	this	cannot	be	the	case	given	the	

assumptions	we	made
• This	implies	that	there	is	some	node	𝑢 with	

more	than	(𝑛 − 1) neighbors…But	we	have	
assumed	that	𝐺 is	simple.	Contradiction!

Proof	by	contradiction	steps

1. State	the	claim	and	all	assumptions
• Given	a	simple	directed	graph 𝐺 = (𝑉, 𝐸) with	

𝒏 = |𝑽| nodes,	we	want	to	prove	that	the	
maximum	size	of	the	edge	set	𝑬 is	 𝐄 = 	𝒏 ⋅
(𝒏 − 𝟏).

2. Assume	we	have	an	example	where	it	is	not	true
• Assume	for	contradiction	that	we	have	a	graph	

with	 𝑬 > 𝒏 ⋅ (𝒏 − 𝟏).
3. Show	that	this	cannot	be	the	case	given	the	

assumptions	we	made
• This	implies	that	there	is	some	node	𝑢 with	

more	than	(𝑛 − 1) neighbors…But	we	have	
assumed	that	𝐺 is	simple.	Contradiction!

Data	Structures	for	Graphs
Undirected	

Adjacency	List
[1,	2]
[2,	1,	3]
[3,	4,	6,	7]
[4,	3,	5]
[5,	4,	6]
[6,	3,	5,	7]
[7,	3,	6]

1					2					3				4					5				6					7
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 1 1
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0
0

0
0

1
1

0
0

1
0

0
1

1
07	

		6
			
5	
		4
			
3	
		2
		1

Adjacency	Matrix

Data	Structures	for	Graphs 1 4

3 52

7 6

Undirected	

Adjacency	List
[1,	2]
[2,	1,	3]
[3,	4,	6,	7]
[4,	3,	5]
[5,	4,	6]
[6,	3,	5,	7]
[7,	3,	6]

1					2					3				4					5				6					7
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 1 1
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0
0

0
0

1
1

0
0

1
0

0
1

1
07	

		6
			
5	
		4
			
3	
		2
		1

Adjacency	Matrix

Edgelist:	A	list	of	tuples	(𝑢, 𝑣) representing	the	edges	in	a	graph	𝐺
• Advantage:	Very	simple	to	interpret
• Disadvantages:	

• Edge	lookup/insertion/deletion	is	𝑂(𝑚)

Adjacency	List:	A	list	of	lists	where	the	first	item	is	a	node	𝑢 and	all	items	
in	the	list	are	connected	to	𝑢

• Advantages:	
• Stores	same	information	as	edgelist
• Edge	lookup/insertion/deletion	can	be	as	fast	as	𝑂(𝑛)

• Disadvantage:	stores	redundant	info	for	undirected	graphs

Adjacency	Matrix:	A	matrix	𝐴[1. . 𝑛, 1. . 𝑛] where	each	entry	𝐴[𝑖, 𝑗] is	1	if	
an	edge	exists	between	nodes	𝑖 and	𝑗 and	0	otherwise

• Advantages:	
• Simple	way	to	represent	dense	graphs	(many	entries	1)
• Edge	lookup/insertion/deletion	is	𝑂 1
• Spectral	graph	analysis/linear	algebraic	operations

• Disadvantages:	
• Wastes	space	when	many	entries	are	0	
• Stores	redundant	info	for	undirected	graphs

Data	Structures	for	Graphs 1 4

3 52

7 6

Undirected	

Edgelist
(1,2)
(2,3)
(3,4)
(4,5)
(5,6)
(6,3)
(6,7)
(7,3)

Adjacency	List
[1,	2]
[2,	1,	3]
[3,	4,	6,	7]
[4,	3,	5]
[5,	4,	6]
[6,	3,	5,	7]
[7,	3,	6]

1					2					3				4					5				6					7
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 1 1
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0
0

0
0

1
1

0
0

1
0

0
1

1
07	

		6
			
5	
		4
			
3	
		2
		1

Adjacency	Matrix

Data	Structures	for	Graphs
Edgelist:	A	list	of	tuples	(𝑢, 𝑣) representing	the	edges	in	a	graph	𝐺

• Advantage:	Very	simple	to	interpret
• Disadvantages:	

• Edge	lookup/insertion/deletion	is	𝑂(𝑚)

Adjacency	List:	A	list	of	lists	where	the	first	item	is	a	node	𝑢 and	all	items	
in	the	list	are	connected	to	𝑢

• Advantages:	
• Stores	same	information	as	edgelist
• Edge	lookup/insertion/deletion	can	be	as	fast	as	𝑂(𝑛)

• Disadvantage:	stores	redundant	info	for	undirected	graphs

Adjacency	Matrix:	A	matrix	𝐴[1. . 𝑛, 1. . 𝑛] where	each	entry	𝐴[𝑖, 𝑗] is	1	if	
an	edge	exists	between	nodes	𝑖 and	𝑗 and	0	otherwise

• Advantages:	
• Simple	way	to	represent	dense	graphs	(many	entries	1)
• Edge	lookup/insertion/deletion	is	𝑂 1
• Spectral	graph	analysis/linear	algebraic	operations

• Disadvantages:	
• Wastes	space	when	many	entries	are	0	
• Stores	redundant	info	for	undirected	graphs

1 4

3 52

7 6

Undirected	

Edgelist
(1,2)
(2,3)
(3,4)
(4,5)
(5,6)
(6,3)
(6,7)
(7,3)

Adjacency	List
[1,	2]
[2,	1,	3]
[3,	4,	6,	7]
[4,	3,	5]
[5,	4,	6]
[6,	3,	5,	7]
[7,	3,	6]

1					2					3				4					5				6					7
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 1 1
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0
0

0
0

1
1

0
0

1
0

0
1

1
07	

		6
			
5	
		4
			
3	
		2
		1

Adjacency	Matrix

Data	Structures	for	Graphs 1 4

3 52

7 6

Undirected	

Edgelist
(1,2)
(2,3)
(3,4)
(4,5)
(5,6)
(6,3)
(6,7)
(7,3)

Adjacency	List
[1,	2]
[2,	1,	3]
[3,	4,	6,	7]
[4,	3,	5]
[5,	4,	6]
[6,	3,	5,	7]
[7,	3,	6]

	 1 2 3 4 5 6 7
1 0 1 0 0 0 0 0
2 1 0 1 0 0 0 0
3 0 1 0 1 0 1 1
4 0 0 1 0 1 0 0
5 0 0 0 1 0 1 0
6 0 0 1 0 1 0 1
7 0 0 1 0 0 6 0

Adjacency	Matrix

Edgelist:	A	list	of	tuples	(𝑢, 𝑣) representing	the	edges	in	a	graph	𝐺
• Advantage:	Very	simple	to	interpret
• Disadvantages:	

• Edge	lookup/insertion/deletion	is	𝑂(𝑚)

Adjacency	List:	A	list	of	lists	where	the	first	item	is	a	node	𝑢 and	all	items	
in	the	list	are	connected	to	𝑢

• Advantages:	
• Stores	same	information	as	edgelist
• Edge	lookup/insertion/deletion	can	be	as	fast	as	𝑂(𝑛)

• Disadvantage:	stores	redundant	info	for	undirected	graphs

Adjacency	Matrix:	A	matrix	𝐴[1. . 𝑛, 1. . 𝑛] where	each	entry	𝐴[𝑖, 𝑗] is	1	if	
an	edge	exists	between	nodes	𝑖 and	𝑗 and	0	otherwise

• Advantages:	
• Simple	way	to	represent	dense	graphs	(many	entries	1)
• Edge	lookup/insertion/deletion	is	𝑂 1
• Spectral	graph	analysis/linear	algebraic	operations

• Disadvantages:	
• Wastes	space	when	many	entries	are	0	
• Stores	redundant	info	for	undirected	graphs

Data	Structures	for	Graphs 1 4

3 52

7 6

Undirected	

Edgelist
(1,2)
(2,3)
(3,4)
(4,5)
(5,6)
(6,3)
(6,7)
(7,3)

Adjacency	List
[1,	2]
[2,	1,	3]
[3,	4,	6,	7]
[4,	3,	5]
[5,	4,	6]
[6,	3,	5,	7]
[7,	3,	6]

Adjacency	Matrix

All	of	these	data	structures	can	be	modified	to	
make	computations	faster	or	more	space	efficient

• Example:	Using	a	lookup	table/dictionary	to	
store	an	adjacency	list	would	let	us	return	
the	list	of	neighbors	for	a	node	in	𝑂(1) time!

How	we	store	a	graph	is	a	choice	we	make	for	
every	algorithm	we	design

• There	is	no	one	size	fits	all!	Different	
problems	will	call	for	different	data	
structures.

• Per	Erickson:	Usually	we	don’t	need	
arbitrary	edge	lookup,	so	it	doesn’t	make	
sense	to	optimize	for	that	all	the	time!

	 1 2 3 4 5 6 7
1 0 1 0 0 0 0 0
2 1 0 1 0 0 0 0
3 0 1 0 1 0 1 1
4 0 0 1 0 1 0 0
5 0 0 0 1 0 1 0
6 0 0 1 0 1 0 1
7 0 0 1 0 0 6 0

Paths	through	graphs

A	path 𝑃 from	vertex	𝑢 to	vertex	𝑣 through	a	graph	is	
an	ordered	sequence	of	consecutive	edges	from	𝐸
where	each	node	is	visited	at	most	once:

𝑃	 = { 𝑢,𝑤+ , 𝑤+, 𝑤- , … , 𝑤^*+, 𝑣 }

A walk through	a	graph	is	similar	to	a	path,	but	nodes	
can	be	visited	more	than	once.	A	walk	is	closed if	it	
starts	and	ends	with	the	same	node;	otherwise	it	is	
called	open.

Undirected	

Directed	

Paths	through	graphs
Undirected	

Directed	

A	path 𝑃 from	vertex	𝑣+ to	vertex	𝑣^ is	an	ordered	
sequence	of	consecutive	edges	from	𝐸 where	each	node	
is	visited	at	most	once.	

𝑃	 = { 𝑣+, 𝑣- , 𝑣-, 𝑣` , … , 𝑣^*+, 𝑣^ }

A	path	visiting	𝑘 nodes	has	length	𝑘 − 1,	since	the	length	
is	the	number	of	edges	traversed.

A walk through	a	graph	is	similar	to	a	path,	but	nodes	can	
be	visited	more	than	once.	A	walk	is	closed if	it	starts	and	
ends	with	the	same	node;	otherwise	it	is	called	open.

Paths	through	graphs
Undirected	

Directed	

A	path 𝑃 from	vertex	𝑣+ to	vertex	𝑣^ is	an	ordered	
sequence	of	consecutive	edges	from	𝐸 where	each	node	
is	visited	at	most	once.	

𝑃	 = { 𝑣+, 𝑣- , 𝑣-, 𝑣` , … , 𝑣^*+, 𝑣^ }

A	path	visiting	𝑘 nodes	has	length	𝑘 − 1,	since	the	length	
is	the	number	of	edges	traversed.

A walk through	a	graph	is	similar	to	a	path,	but	nodes	can	
be	visited	more	than	once.	A	walk	is	closed if	it	starts	and	
ends	with	the	same	node;	otherwise	it	is	called	open.

A	cycle is	a	closed	walk	that	visits	any	node	except	the	
first	at	most	once.

A	node	𝑣 is	reachable from	a	node	𝑢 if	there	is	a	path	
from	𝑢 to	𝑣.

A	graph	𝐺 = (𝑉, 𝐸) is	connected if	for	every	pair	of	
nodes	𝑢, 𝑣,	the	node	𝑣 is	reachable	from	𝑢.

In	a	directed	graph,	we	have	two	types	of	connectivity:
• Strongly	Connected:	there	is	a	path	both	from	𝑢 to	
𝑣 and	from	𝑣 to	𝑢.

• Weakly	Connected:	there	is		a	path	either	from	𝑢 to	
𝑣 or	from	𝑣 to	𝑢

Reachability	&	Connectivity
Undirected	

Directed	

A	node	𝑣 is	reachable from	a	node	𝑢 if	there	is	a	path	
from	𝑢 to	𝑣.

A	graph	𝐺 = (𝑉, 𝐸) is	connected if	for	every	pair	of	
nodes	𝑢, 𝑣,	the	node	𝑣 is	reachable	from	𝑢.

In	a	directed	graph,	we	have	two	types	of	connectivity:
• Strongly	Connected:	there	is	a	path	both	from	𝑢 to	
𝑣 and	from	𝑣 to	𝑢.

• Weakly	Connected:	there	is		a	path	either	from	𝑢 to	
𝑣 or	from	𝑣 to	𝑢

Reachability	&	Connectivity
Undirected	

Directed	

Reachability	&	Connectivity

A	node	𝑣 is	reachable from	a	node	𝑢 if	there	is	a	path	
from	𝑢 to	𝑣.

A	graph	𝐺 = (𝑉, 𝐸) is	connected if	for	every	pair	of	
nodes	𝑢, 𝑣,	the	node	𝑣 is	reachable	from	𝑢.

In	a	directed	graph,	we	have	two	types	of	connectivity:
• Strongly	Connected:	there	is	a	path	both	from	𝑢 to	
𝑣 and	from	𝑣 to	𝑢.

• Weakly	Connected:	there	is		a	path	either	from	𝑢 to	
𝑣 or	from	𝑣 to	𝑢

Undirected	

Directed	

Exploring	a	graph:	Reachability

Assume	we	have	an	undirected	
graph	𝐺 = 𝑉, 𝐸 and	we	want	
to	determine	whether	the	
graph	is	connected.

We	need	an	algorithm	that	will	
tell	us	whether	every	node	is	
reachable	from	every	other	
node.

1 4

3 52

7 6

Idea:	traverse	the	graph	edge	by	edge.	

If	we	can	reach	every	node	without	
restarting,	we	know	the	graph	is	

connected!

Exploring	a	graph:	Breadth	First	Search

1 4

3 52

7 6

Idea:	traverse	the	graph	edge	by	edge.	

If	we	can	reach	every	node	without	
restarting,	we	know	the	graph	is	

connected!

𝐵𝐹𝑆 𝐺 = 𝑉, 𝐸 :
𝑄 ← empty queue
visited ← ∅

Append node 1 to 𝑄
While 𝑄 is not empty:
𝑢 ← next node in 𝑄
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
if 𝑣 ∉	visited

Append 𝑣 to Q
Add 𝑢 to visited

If |visited| = |𝑉|:
return True

Else:
return False

Breadth	First	Search	Running	time

1 4

3 52

7 6

By	definition,	we	visit	every	node	once,	so	we	
immediately	have	𝑂(𝑛) to	start.

At	each	node,	we	check	if	each	of	its	neighbors	
has	been	visited	already.	

Observation:	this	is	the	same	as	visiting	every	
edge!	Thus	we	also	have	𝑂(𝑚).

Therefore,	the	running	time	of	BFS	is	𝑂(𝑛 + 𝑚).

𝐵𝐹𝑆 𝐺 = 𝑉, 𝐸 :
𝑄 ← empty queue
visited ← ∅

Append node 1 to 𝑄
While 𝑄 is not empty:
𝑢 ← next node in 𝑄
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
if 𝑣 ∉	visited

Append 𝑣 to Q
Add 𝑢 to visited

If |visited| = |𝑉|:
return True

Else:
return False

Exploring	a	graph:	Depth	First	Search

1 4

3 52

7 6

Idea:	traverse	the	graph	edge	by	edge.	

If	we	can	reach	every	node	without	
restarting,	we	know	the	graph	is	

connected!

𝐷𝐹𝑆 𝐺 = 𝑉, 𝐸 :
S ← empty stack
visited ← ∅

Push node 1 onto 𝑆
While 𝑆 is not empty:
𝑢 ← pop from 𝑆
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
if 𝑣 ∉	visited:

Push 𝑣 onto 𝑆
Add 𝑢 to visited

If |visited| = |𝑉|:
return True

Else:
return False

Depth	First	Search	Running	time

1 4

3 52

7 6

𝐷𝐹𝑆 𝐺 = 𝑉, 𝐸 :
S ← empty stack
visited ← ∅

Push node 1 onto 𝑆
While 𝑆 is not empty:
𝑢 ← pop from 𝑆
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
if 𝑣 ∉	visited:

Push 𝑣 onto 𝑆
Add 𝑢 to visited

If |visited| = |𝑉|:
return True

Else:
return False

Depth	First	Search	Running	time

1 4

3 52

7 6

Same	argument	as	BFS!	

𝑂(𝑛 + 𝑚)

𝐷𝐹𝑆 𝐺 = 𝑉, 𝐸 :
S ← empty stack
visited ← ∅

Push node 1 onto 𝑆
While 𝑆 is not empty:
𝑢 ← pop from 𝑆
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
if 𝑣 ∉	visited:

Push 𝑣 onto 𝑆
Add 𝑢 to visited

If |visited| = |𝑉|:
return True

Else:
return False

Note:	These	algorithms	have	recursive	equivalents!

𝐷𝐹𝑆 𝐺 = 𝑉, 𝐸 :
S ← empty stack
visited ← ∅

Push node 1 onto 𝑆
While 𝑆 is not empty:
𝑢 ← pop from 𝑆
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
if 𝑣 ∉	visited:

Push 𝑣 onto 𝑆
Add 𝑢 to visited

If |visited| = |𝑉|:
return True

Else:
return False

Our	iterative	DFS	really	just	makes	
the	recursive	stack	explicit!

Exploring	Connected	Components

Subgraphs	&	Components

A	graph	𝐺l = (𝑉l, 𝐸l) is	a	subgraph of	another	graph	
𝐺 = (𝑉, 𝐸) if	𝑉′ ⊆ 𝑉 and	𝐸l ⊆ 𝐸.

A	graph	is	trivially	a	subgraph	of	itself.	We	usually	
exclude	this	case	and	unless	otherwise	specified	we	
mean	proper subgraphs. 8 9

11
10

1 4

3 52

7 6

Subgraphs	&	Components

Every	graph	is	made	up	of	1	or	more	components,	
which	are	maximal	connected	subgraphs.

Two	nodes	are	in	the	same	component	if	they	are	
mutually	reachable.

Nodes	are	in	different	components	if	they	cannot	be	
reached	from	one	another.

We	can	use	our	exploration	algorithms	to	find	
connected	components!

8 9

11
10

1 4

3 52

7 6

Finding	Undirected	Components	with	DFS

8 9

11
10

1 4

3 52

7 6

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠𝐷𝐹𝑆 𝐺 = 𝑉, 𝐸 :
component[v] = -1 For all 𝑣 ∈ 𝑉
comp = 1
S ← empty stack
visited ← ∅

Push node 1 onto 𝑆
component[1] = comp
While 𝑆 is not empty:

𝑢 ← pop from 𝑆
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):

if 𝑣 ∉	visited:
Push 𝑣 onto 𝑆
component[𝑣] = comp

Add 𝑢 to visited

If 𝑆 is empty AND |visited| < |V|:
Choose a node v ∈ 𝑉 −visited
Push 𝑣 onto 𝑆
comp = comp+1
component[𝑣] = comp

What	about	directed	graphs?

Recall:	Two	types	of	connected	
components	in	directed	graphs

1. Weakly	connected:	for	every		
pair	(𝑢, 𝑣),	at	least	one	node	is	
reachable	from	the	other.

2. Strongly	connected:	for	every	
pair	(𝑢, 𝑣),	both	nodes	are	
reachable	from	the	other

8 9

11
10

1 4

3 52

7 6

Finding	Strongly	Connected	Components

𝑆𝐶𝐶 𝐺 = 𝑉, 𝐸 :
Let 𝐺r be 𝐺 with all edges “reversed”

Let comp[𝑢]← −1 for all 𝑢
Let c ← 0

For 𝑢 from 1..n:
if comp[𝑢] = -1:
Let 𝑆 be the nodes found by DFS(𝐺, 𝑢)
Let 𝑇 be the nodes found by DFS(𝐺r, 𝑢)
// intersection of 𝑆 and 𝑇 is a SCC!
label comp[𝑣]= 𝑐 for all 𝑣 ∈ 𝑆 ∩ 𝑇
let 𝑐	 ← 𝑐 + 1

Return comp

8 9

11
10

1 4

3 52

7 6

Pause:	What	have	we	done	so	far?

We	defined	two	graph	traversal	algorithms	that	can	help	us	determine	
reachability between	nodes	and	overall	connectivity of	a	graph

• DFS:	Stack	based	algorithm
• BFS:	Queue	based	algorithm
• Both	can	be	written	either	recursively	or	iteratively

We	showed	how	we	can	use	these	algorithms	to	discover	the	components of	
a	graph

• In	undirected	graphs,	it	is	enough	to	just	run	our	traversal	algorithm	until	every	node	
is	visited	once,	assigning	to	a	new	component	every	time	we	“run	out”	of	nodes

• In	directed	graphs,	we	need	to	check	both	directions	to	get	strongly	connected
components.	
• We	achieve	this	by	cleverly	running	DFS	from	the	same	node	twice,	first	on	the	input	graph	as	
usual,	then	on	the	graph	with	reversed	edges.	The	intersection	of	the	reachable	sets	for	these	
two	DFS	calls	is	a	strongly	connected	component!

Typology	of	Edges	in	DFS

For	every	node	discovered	during	a	
DFS	execution,	we	can	keep	track	of	
its	parent.

The	graph	of	the	parent-child	
relationships	is	a	tree	where	each	
edge	can	be	assigned	to	one	of	four	
types:

Tree	edge
• Explore	new	nodes

Forward	edge
• Ancestor	to	descendant

Backward	edge
• Descendant	to	ancestor

Cross	edges
• No	ancestral	relationship

Typology	of	Edges	in	DFS

For	every	node	discovered	during	a	
DFS	execution,	we	can	keep	track	of	
its	parent.

The	graph	of	the	parent-child	
relationships	is	a	tree	where	each	
edge	can	be	assigned	to	one	of	four	
types:

Tree	edge
• Explore	new	nodes

Forward	edge
• Ancestor	to	descendant

Backward	edge
• Descendant	to	ancestor

Cross	edges
• No	ancestral	relationship

𝐷𝐹𝑆 𝐺 = 𝑉, 𝐸 :
S ← empty stack
visited ← ∅

Push node 1 onto 𝑆
While 𝑆 is not empty:
𝑢 ← pop from 𝑆
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):

if 𝑣 ∉	visited:
Push 𝑣 onto 𝑆
parent[𝑣] ← 𝑢

Add 𝑢 to visited

If |visited| = |𝑉|:
return True

Else:
return False

Typology	of	Edges	in	DFS

For	every	node	discovered	during	a	
DFS	execution,	we	can	keep	track	of	
its	parent.

The	graph	of	the	parent-child	
relationships	is	a	tree	where	each	
edge	can	be	assigned	to	one	of	four	
types:

Tree	edge:
• Explore	new	nodes

Forward	edge:
• Ancestor	to	descendant

Backward	edge:
• Descendant	to	ancestor

Cross	edges:
• No	ancestral	relationship

u c

ba

Typology	of	Edges	in	DFS

For	every	node	discovered	during	a	
DFS	execution,	we	can	keep	track	of	
its	parent.

The	graph	of	the	parent-child	
relationships	is	a	tree	where	each	
edge	can	be	assigned	to	one	of	four	
types:

Tree	edge:	(𝑢, 𝑎), (𝑢, 𝑏), (𝑏, 𝑐)
• Explore	new	nodes

Forward	edge:	(𝑢, 𝑐)
• Ancestor	to	descendant

Backward	edge:	(𝑎, 𝑢)
• Descendant	to	ancestor

Cross	edges:	(𝑏, 𝑎)
• No	ancestral	relationship

u c

ba

Backwards	edges	
identify	cycles in	the	
graph!

A	cycle	is	a	closed	
walk	(starts	and	ends	
at	the	same	vertex)	
that	visits	each	vertex	
in	the	walk	at	most	
once.

Post-Order

A	post-ordering of	a	graph	𝐺 = (𝑉, 𝐸) is	
an	ordering	of	the	nodes	based	on	when	
they	were	marked	visited	by	DFS.

To	get	a	post-order,	we	maintain	a	global	
clock	variable	that	is	initialized	to	1.

Every	time	we	add	a	node	to	the	visited	
set,	we	set	its	post-order	value	to	the	
current	value	of	clock,	then	increment	
clock.

𝐷𝐹𝑆 𝐺 = 𝑉, 𝐸 :
S ← empty stack
visited ← ∅

Push node 1 onto 𝑆
While 𝑆 is not empty:
𝑢 ← pop from 𝑆
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
if 𝑣 ∉	visited:
Push 𝑣 onto 𝑆

Add 𝑢 to visited
post-visit(𝑢)

post-visit(𝑢):
set postorder[𝑢] = clock
clock ← clock + 1

Post-Order

A	post-ordering of	a	graph	𝐺 = (𝑉, 𝐸) is	
an	ordering	of	the	nodes	based	on	when	
they	were	marked	visited	by	DFS.

To	get	a	post-order,	we	maintain	a	global	
clock	variable	that	is	initialized	to	1.

Every	time	we	add	a	node	to	the	visited	
set,	we	set	its	post-order	value	to	the	
current	value	of	clock,	then	increment	
clock.

u c

ba

Vertex u a b c
Postorder

Post-Order

A	post-ordering of	a	graph	𝐺 = (𝑉, 𝐸) is	
an	ordering	of	the	nodes	based	on	when	
they	were	marked	visited	by	DFS.

To	get	a	post-order,	we	maintain	a	global	
clock	variable	that	is	initialized	to	1.

Every	time	we	add	a	node	to	the	visited	
set,	we	set	its	post-order	value	to	the	
current	value	of	clock,	then	increment	
clock.

u c

ba

Vertex u a b c
Postorder 4 1 3 2

Post-Order

Observation:	If	postorder[𝑢]	<	postorder[𝑣],	then	(𝑢, 𝑣)	is	
a	backwards	edge!	Why?
• DFS(𝑢)	can’t	finish	until	its	children	are	finished
• If	postorder[𝑢]	<	postorder[𝑣],	then	DFS(𝑢)	finishes	
before	DFS(𝑣),	meaning	DFS(𝑣)	was	not	called	by	DFS(𝑢)
• For	this	situation	to	arise,	when	we	ran	DFS(𝑢),	we	must	
have	had	𝑣 ∈ visited,	implying	DFS(𝑣)	ran	first
• Which	means	DFS(𝑣)	started	first	but	finished	after	
DFS(𝑢),	which	can	only	happen	for	a	backwards	edge!

u c

ba

Vertex u a b c
Postorder 4 1 3 2

Post-Order

Observation:	If	postorder[𝑢]	<	postorder[𝑣],	then	(𝑢, 𝑣)	is	
a	backwards	edge!	Why?
• DFS(𝑢)	can’t	finish	until	its	children	are	finished
• If	postorder[𝑢]	<	postorder[𝑣],	then	DFS(𝑢)	finishes	
before	DFS(𝑣),	meaning	DFS(𝑣)	was	not	called	by	DFS(𝑢)
• For	this	situation	to	arise,	when	we	ran	DFS(𝑢),	we	must	
have	had	𝑣 ∈ visited,	implying	DFS(𝑣)	ran	first
• Which	means	DFS(𝑣)	started	first	but	finished	after	
DFS(𝑢),	which	can	only	happen	for	a	backwards	edge!

u c

ba

Vertex u a b c
Postorder 4 1 3 2

In	our	example,	(u,v)	is	(a,u)	and	postorder[a]	<	postorder[u]!

Directed	Acyclic	Graphs	and	Topological	Ordering

Directed	Acyclic	Graph	(DAG)

• A	directed	graph	with	no	cycles
• Represent	precedence	relationships

• “this”	comes	before	“that”
• “this”	is	prior	to	“that”

A	topological	ordering of	a	directed	graph	is	
a	labeling	of	the	nodes	so	that	all	edges	
point	“forward”,	meaning	for	all	directed	
edges	 𝑣w, 𝑣x , 𝑗 > 𝑖

Claim:	If	𝐺 has	a	topological	ordering	it	is	a	
DAG

𝑣- 𝑣` 𝑣y 𝑣z𝑣+ 𝑣{ 𝑣|

Directed	Acyclic	Graph	(DAG)

• A	directed	graph	with	no	cycles
• Represent	precedence	relationships

• “this”	comes	before	“that”
• “this”	is	prior	to	“that”

A	topological	ordering of	a	directed	graph	is	
a	labeling	of	the	nodes	so	that	all	edges	
point	“forward”,	meaning	for	all	directed	
edges	 𝑣w, 𝑣x , 𝑗 > 𝑖

Claim:	If	𝐺 has	a	topological	ordering	it	is	a	
DAG

𝑣- 𝑣`

𝑣y𝑣z

𝑣+

𝑣{

𝑣|

𝑣- 𝑣` 𝑣y 𝑣z𝑣+ 𝑣{ 𝑣|

Two	problems	in	one

Problem	1:	Is	𝐺 a	DAG?

Problem	2:	Given	a	directed	graph,	can	it	be	topologically	ordered?

Claim:	𝐺 has	a	topological	ordering	if	and	only	if	𝐺 is	a	DAG
• We	will	design	an	algorithm	that	either	outputs	a	topological	ordering	or	that	
the	graph	is	not	a	DAG

Two	problems	in	one
Observation:	
In	a	topological	

ordering,	there	is	a	
node	with	no	incoming	

edges!

𝑣- 𝑣` 𝑣y 𝑣z𝑣+ 𝑣{ 𝑣| s s

Observation:	
In	a	DAG,	there	is	a	node	
with	no	incoming	edges!

Check	by	following		incoming	links	backwards	until	you	find	a	
node	that	has	none,	or	you	find	a	cycle.

Does	every	DAG	have	a	node	with	no	
incoming	edges?
Claim:	For	every	DAG	on	𝑛 ∈ ℕ nodes,	there	is	a	topological	ordering.

Lemma	(from	previous	slide):	Every	DAG	has	a	node	with	no	incoming	edges.

We	can	prove	this	by	induction	on	𝑛.

Base	case:	𝑛 = 1;	trivially	true

Inductive	step:	
• Assume	topological	ordering	exists	for	DAGS	up	to	𝑛 nodes.	
• Given	a	dag	on	𝑛 + 1 nodes,	identify	a	node	with	no	incoming	
edges.	
• Remove	this	node,	and	the	remaining	DAG	on	𝑛 nodes	has	a	
topological	ordering.		
• Since	the	node	we	removed	has	no	incoming	edges,	it	can	be	
trivially	added	to	the	beginning	of	the	ordering.	Hence	the	claim.

Does	every	DAG	have	a	node	with	no	
incoming	edges?
Claim:	For	every	DAG	on	𝑛 ∈ ℕ nodes,	there	is	a	topological	ordering.

Lemma	(from	previous	slide):	Every	DAG	has	a	node	with	no	incoming	edges.

We	can	prove	this	by	induction	on	𝑛.

Base	case:	𝑛 = 1;	trivially	true

Inductive	step:	
• Assume	topological	ordering	exists	for	DAGS	up	to	𝑛 nodes.	
• Given	a	dag	on	𝑛 + 1 nodes,	identify	a	node	with	no	incoming	
edges.	
• Remove	this	node,	and	the	remaining	DAG	on	𝑛 nodes	has	a	
topological	ordering.		
• Since	the	node	we	removed	has	no	incoming	edges,	it	can	be	
trivially	added	to	the	beginning	of	the	ordering.	Hence	the	claim.

Does	every	DAG	have	a	node	with	no	
incoming	edges?
Claim:	For	every	DAG	on	𝑛 ∈ ℕ nodes,	there	is	a	topological	ordering.

Lemma	(from	previous	slide):	Every	DAG	has	a	node	with	no	incoming	edges.

We	can	prove	this	by	induction	on	𝑛.

Base	case:	𝑛 = 1;	trivially	true

Inductive	step:	
• Assume	topological	ordering	exists	for	DAGs	up	to	𝑛 nodes.	
• Given	a	dag	on	𝑛 + 1 nodes,	identify	a	node	with	no	incoming	
edges.	
• Remove	this	node,	and	the	remaining	DAG	on	𝑛 nodes	has	a	
topological	ordering.		
• Since	the	node	we	removed	has	no	incoming	edges,	it	can	be	
trivially	added	to	the	beginning	of	the	ordering.	Hence	the	claim.

Does	every	DAG	have	a	node	with	no	
incoming	edges?
Claim:	For	every	DAG	on	𝑛 ∈ ℕ nodes,	there	is	a	topological	ordering.

Lemma	(from	previous	slide):	Every	DAG	has	a	node	with	no	incoming	edges.

We	can	prove	this	by	induction	on	𝑛.

Base	case:	𝑛 = 1;	trivially	true

Inductive	step:	
• Assume	topological	ordering	exists	for	DAGS	up	to	𝑛 nodes.	
• Given	a	dag	on	𝑛 + 1 nodes,	identify	a	node	with	no	incoming	
edges.	We	know	at	least	one	exists.	
• Remove	this	node,	and	the	remaining	DAG	on	𝑛 nodes	has	a	
topological	ordering.		
• Since	the	node	we	removed	has	no	incoming	edges,	it	can	be	
trivially	added	to	the	beginning	of	the	ordering.	Hence	the	claim.

Does	every	DAG	have	a	node	with	no	
incoming	edges?
Claim:	For	every	DAG	on	𝑛 ∈ ℕ nodes,	there	is	a	topological	ordering.

Lemma	(from	previous	slide):	Every	DAG	has	a	node	with	no	incoming	edges.

We	can	prove	this	by	induction	on	𝑛.

Base	case:	𝑛 = 1;	trivially	true

Inductive	step:	
• Assume	topological	ordering	exists	for	DAGS	up	to	𝑛 nodes.	
• Given	a	dag	on	𝑛 + 1 nodes,	identify	a	node	with	no	incoming	
edges.	We	know	at	least	one	exists.	
• Remove	this	node,	and	the	remaining	DAG	on	𝑛 nodes	has	a	
topological	ordering	by	the	inductive	hypothesis.		
• Since	the	node	we	removed	has	no	incoming	edges,	it	can	be	
trivially	added	to	the	beginning	of	the	ordering.	Hence	the	claim.

Does	every	DAG	have	a	node	with	no	
incoming	edges?
Claim:	For	every	DAG	on	𝑛 ∈ ℕ nodes,	there	is	a	topological	ordering.

Lemma	(from	previous	slide):	Every	DAG	has	a	node	with	no	incoming	edges.

We	can	prove	this	by	induction	on	𝑛.

Base	case:	𝑛 = 1;	trivially	true

Inductive	step:	
• Assume	topological	ordering	exists	for	DAGS	up	to	𝑛 nodes.	
• Given	a	dag	on	𝑛 + 1 nodes,	identify	a	node	with	no	incoming	
edges.	We	know	at	least	one	exists.	
• Remove	this	node,	and	the	remaining	DAG	on	𝑛 nodes	has	a	
topological	ordering	by	the	inductive	hypothesis.		
• Since	the	node	we	removed	has	no	incoming	edges,	it	can	be	
trivially	added	to	the	beginning	of	the	ordering.	Hence	the	claim.

Observation:	If	postorder[𝑢]	<	postorder[𝑣],	then	(𝑢, 𝑣)	is	
a	backwards	edge!	Why?
• DFS(𝑢)	can’t	finish	until	its	children	are	finished
• If	postorder[𝑢]	<	postorder[𝑣],	then	DFS(𝑢)	finishes	
before	DFS(𝑣),	meaning	DFS(𝑣)	was	not	called	by	DFS(𝑢)
• For	this	situation	to	arise,	when	we	ran	DFS(𝑢),	we	must	
have	had	𝑣 ∈ visited,	implying	DFS(𝑣)	ran	first
• Which	means	DFS(𝑣)	started	first	but	finished	after	
DFS(𝑢),	which	can	only	happen	for	a	backwards	edge!

u c

ba

Vertex u a b c
Postorder 4 1 3 2

In	our	example,	(u,v)	is	(a,u)	and	postorder[a]	<	postorder[u]!

Reminder:	Post-ordering	identifies	backwards	edges!

Topological	Orderings

Claim:	Ordering	nodes	by	decreasing	post-order	gives	a	topological	
ordering.

Proof:
• We	know	that	a	DAG	has	no	backward	edges,	since	backward	edges	imply	the	
presence	of	cycles.
• Suppose	the	decreasing	post-ordering	is	not	a	topological	ordering

• There	must	be	an	edge	(u,v)	such	that	postorder[u]	<	postorder[v]
• But	such	an	edge	would	be	a	backward	edge,	implying	a	cycle
• We	showed	such	an	edge	can’t	exist	in	a	DAG.	Contradiction!

Topological	Orderings

Claim:	Ordering	nodes	by	decreasing	post-order	gives	a	topological	
ordering.

Example:
u c

ba

Vertex u a b c
Postorder 4 1 3 2

u cb a

Topological	Ordering	Wrap

A	DAG	is	a	directed	graph	with	no	cycles.

For	any	DAG,	we	can	find	a	topological	ordering	in	𝑂(𝑛 +𝑚) time	using	DFS,	
since	a	reverse	post-ordering	is	a	topological	ordering.

If	we	are	not	sure	our	input	graph	is	a	DAG,	we	can	still	use	DFS	to	identify	
backwards	edges	in	the	DFS	tree,	which	imply	cycles.

TopologicalOrdering(𝐺 = (𝑉, 𝐸)):
Run DFS(𝐺) with post-order
If ∃�,�	𝑠. 𝑡.	postorder[𝑢] < postorder[𝑣]:
Return False

Else:
Return reverse(postorder)

Much	more	to	come	on	graphs!

Tomorrow:	Shortest	paths	and	betweenness centrality

Suggested	Reading	assignment:	Erickson	up	through	
Chapter	8.5

Homework	3	will	be	out	shortly	after	class.	Get	started	
early!

Midterm	grades	coming	later	this	week,	please	be	
patient!

