
Lecture	13:	DAGs	and	
Shortest	Paths

Tim	LaRock
larock.t@northeastern.edu

bit.ly/cs3000syllabus



Business

Homework	3:	Due	next	Monday	at	midnight	Boston	time	via	Gradescope!

Midterm	2:	Will	be	June	10th through	June	12th (same	deal	as	last	time)
• Topics	will	be	graph	algorithms	and	network	flow

Final	exam:	Will	be	June	18th (8PM)	through	June	22nd (8PM)
• Whole	course	will	be	fair	game,	but	focus	will	be	on	last	2	weeks

There	will	be	1-2	more	(short)	homeworks



Today

Review	typology	of	edges	in	a	DFS	tree

Post-ordering	of	nodes	in	a	traversal

Directed	acyclic	graphs	and	topological	node	orderings

Introduction	to	node	betweenness centrality

Shortest	path	algorithms	to	compute	betweenness centrality



Typology	of	Edges	in	DFS

For	every	node	discovered	during	a	
DFS	execution,	we	can	keep	track	of	
its	parent.

The	graph	of	the	parent-child	
relationships	is	a	tree	where	each	
edge	can	be	assigned	to	one	of	four	
types:

Tree	edge:
• Explore	new	nodes

Forward	edge:
• Ancestor	to	descendant

Backward	edge:
• Descendant	to	ancestor

Cross	edges:
• No	ancestral	relationship

u c

ba



Typology	of	Edges	in	DFS

For	every	node	discovered	during	a	
DFS	execution,	we	can	keep	track	of	
its	parent.

The	graph	of	the	parent-child	
relationships	is	a	tree	where	each	
edge	can	be	assigned	to	one	of	four	
types:

Tree	edge:	(𝑢, 𝑎), (𝑢, 𝑏), (𝑏, 𝑐)
• Explore	new	nodes

Forward	edge:	(𝑢, 𝑐)
• Ancestor	to	descendant

Backward	edge:	(𝑎, 𝑢)
• Descendant	to	ancestor

Cross	edges:	(𝑏, 𝑎)
• No	ancestral	relationship

u c

ba

Backwards	edges	
identify	cycles in	the	
graph!

A	cycle	is	a	closed	
walk	(starts	and	ends	
at	the	same	vertex)	
that	visits	each	vertex	
in	the	walk	at	most	
once.



Post-Order

A	post-ordering of	a	graph	𝐺 = (𝑉, 𝐸)
is	an	ordering	of	the	nodes	based	on	
“when”	DFS	from	each	node	finished.

To	get	a	post-order,	we	maintain	a	
global	clock	variable	that	is	initialized	
to	1.

Every	time	we	finish	calling	DFS	on	all	
of	a	node’s	neighbors,	we	set	its	post-
order	value	to	the	current	value	of	
clock,	then	increment	clock.

𝐺 = (𝑉, 𝐸) is a graph
visited[𝑢] =	0	for	all	𝑢 ∈ 𝑉
clock = 1

𝐷𝐹𝑆 𝑢 :
visited[𝑢] = 1
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):

If visited[𝑣] = 0:
parent[𝑣] = 𝑢
DFS(𝑣)

post-visit(𝑢)

post-visit(𝑢):
set postorder[𝑢] = clock
clock ← clock + 1

Recursive	DFS	with	post-ordering



Post-Order

Vertex u a b c
Postorder

𝐺 = (𝑉, 𝐸) is a graph
visited[𝑢] =	0	for	all	𝑢 ∈ 𝑉
clock = 1

𝐷𝐹𝑆 𝑢 :
visited[𝑢] = 1
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
If visited[𝑣] = 0:

parent[𝑣] = 𝑢
DFS(𝑣)

post-visit(𝑢)

post-visit(𝑢):
set postorder[𝑢] = clock
clock ← clock + 1

Recursive	DFS	with	post-ordering

u c

ba



Post-Order
𝐺 = (𝑉, 𝐸) is a graph
visited[𝑢] =	0	for	all	𝑢 ∈ 𝑉
clock = 1

𝐷𝐹𝑆 𝑢 :
visited[𝑢] = 1
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
If visited[𝑣] = 0:

parent[𝑣] = 𝑢
DFS(𝑣)

post-visit(𝑢)

post-visit(𝑢):
set postorder[𝑢] = clock
clock ← clock + 1

Vertex u a b c
Postorder 4 1 3 2

u c

ba

Recursive	DFS	with	post-ordering



Post-Order

Observation:	If	postorder[𝑢]	<	postorder[𝑣],	then	(𝑢, 𝑣)	is	
a	backwards	edge!	Why?	Consider	backwards	edge	(𝑎, 𝑢)
• DFS(𝑢)	can’t	finish	until	its	children	are	finished
• If	postorder[𝑢]	<	postorder[𝑣],	then	DFS(𝑢)	finishes	
before	DFS(𝑣),	meaning	DFS(𝑣)	was	not	called	by	DFS(𝑢)
• For	this	situation	to	arise,	when	we	ran	DFS(𝑢),	we	must	
have	had	𝑣 ∈ visited,	implying	DFS(𝑣)	ran	first
• Which	means	DFS(𝑣)	started	first	but	finished	after	
DFS(𝑢),	which	can	only	happen	for	a	backwards	edge!

u c

ba

Vertex u a b c
Postorder 4 1 3 2



Post-Order

Observation:	If	postorder[𝑢]	<	postorder[𝑣],	then	(𝑢, 𝑣)	is	
a	backwards	edge!	Why? Consider	backwards	edge	(𝑎, 𝑢)
• DFS(𝑎)	can’t	finish	until	its	children	are	finished
• If	postorder[𝑢]	<	postorder[𝑣],	then	DFS(𝑢)	finishes	
before	DFS(𝑣),	meaning	DFS(𝑣)	was	not	called	by	DFS(𝑢)
• For	this	situation	to	arise,	when	we	ran	DFS(𝑢),	we	must	
have	had	𝑣 ∈ visited,	implying	DFS(𝑣)	ran	first
• Which	means	DFS(𝑣)	started	first	but	finished	after	
DFS(𝑢),	which	can	only	happen	for	a	backwards	edge!

u c

ba

Vertex u a b c
Postorder 4 1 3 2



Post-Order

Observation:	If	postorder[𝑢]	<	postorder[𝑣],	then	(𝑢, 𝑣)	is	
a	backwards	edge!	Why? Consider	backwards	edge	(𝑎, 𝑢)
• DFS(𝑎)	can’t	finish	until	its	children	are	finished
• Since	postorder[𝑎]	<	postorder[𝑢],	then	DFS(𝑎)	finished	
before	DFS(𝑢),	meaning	DFS(𝑢)	was	not	called	by	DFS(𝑎)
• For	this	situation	to	arise,	when	we	ran	DFS(𝑢),	we	must	
have	had	𝑣 ∈ visited,	implying	DFS(𝑣)	ran	first
• Which	means	DFS(𝑣)	started	first	but	finished	after	
DFS(𝑢),	which	can	only	happen	for	a	backwards	edge!

u c

ba

Vertex u a b c
Postorder 4 1 3 2



Post-Order

Observation:	If	postorder[𝑢]	<	postorder[𝑣],	then	(𝑢, 𝑣)	is	
a	backwards	edge!	Why? Consider	backwards	edge	(𝑎, 𝑢)
• DFS(𝑎)	can’t	finish	until	its	children	are	finished
• Since	postorder[𝑎]	<	postorder[𝑢],	then	DFS(𝑎)	finished	
before	DFS(𝑢),	meaning	DFS(𝑢)	was	not	called	by	DFS(𝑎)
• For	this	situation	to	arise,	when	we	ran	DFS(𝑢),	we	must	
have	had	𝑣 ∈ visited,	implying	DFS(𝑣)	ran	first
• Which	means	DFS(𝑣)	started	first	but	finished	after	
DFS(𝑢),	which	can	only	happen	for	a	backwards	edge!

u c

ba

Vertex u a b c
Postorder 4 1 3 2



Post-Order

Observation:	If	postorder[𝑢]	<	postorder[𝑣],	then	(𝑢, 𝑣)	is	
a	backwards	edge!	Why? Consider	backwards	edge	(𝑎, 𝑢)
• DFS(𝑎)	can’t	finish	until	its	children	are	finished
• Since	postorder[𝑎]	<	postorder[𝑢],	then	DFS(𝑎)	finished	
before	DFS(𝑢),	meaning	DFS(𝑢)	was	not	called	by	DFS(𝑎)
• For	this	situation	to	arise,	when	we	ran	DFS(𝑎),	we	must	
have	had	visited[𝑢]	=	1,	implying	DFS(𝑢)	ran	first
• Which	means	DFS(𝑣)	started	first	but	finished	after	
DFS(𝑢),	which	can	only	happen	for	a	backwards	edge!

u c

ba

Vertex u a b c
Postorder 4 1 3 2



Post-Order

Observation:	If	postorder[𝑢]	<	postorder[𝑣],	then	(𝑢, 𝑣)	is	
a	backwards	edge!	Why? Consider	backwards	edge	(𝑎, 𝑢)
• DFS(𝑎)	can’t	finish	until	its	children	are	finished
• Since	postorder[𝑎]	<	postorder[𝑢],	then	DFS(𝑎)	finished	
before	DFS(𝑢),	meaning	DFS(𝑢)	was	not	called	by	DFS(𝑎)
• For	this	situation	to	arise,	when	we	ran	DFS(𝑎),	we	must	
have	had	visited[𝑢]	=	1,	implying	DFS(𝑢)	ran	first
• Which	means	DFS(𝑢)	started	first	but	finished	after	
DFS(a),	which	can	only	happen	for	a	backwards	edge!

u c

ba

Vertex u a b c
Postorder 4 1 3 2



Putting	the	pieces	together

We	determined	that	backward	
edges	in	a	DFS	tree	identify	
cycles	in	a	graph.

We	then	showed	that	we	can	
use	DFS	with	post-ordering	to	
identify	backwards	edges.

So	we	can	use	DFS	with	post-
ordering	to	determine	whether	
a	graph	has	cycles!

u c

ba

Backwards	edges	identify	
cycles in	the	graph!

A	cycle	is	a	closed	walk	
(starts	and	ends	at	the	same	
vertex)	that	visits	each	
vertex	in	the	walk	at	most	
once.

Vertex u a b c
Postorder 4 1 3 2

If	postorder[𝑢]	<	postorder[𝑣],	
then	(𝑢, 𝑣)	is	a	backwards	edge!	



Directed	Acyclic	Graphs	and	Topological	Ordering



Directed	Acyclic	Graph	(DAG)

𝑣D 𝑣E 𝑣F 𝑣G𝑣H 𝑣I 𝑣J

• A	directed	graph	with	no	cycles
• Represent	precedence	relationships
• “this”	comes	before	“that”
• “this”	is	prior	to	“that”

A	topological	ordering of	a	directed	graph	
is	a	labeling	of	the	nodes	so	that	all	edges	
point	“forward”,	meaning	for	all	directed	
edges	 𝑣K, 𝑣L , 𝑗 > 𝑖



Directed	Acyclic	Graph	(DAG)

• A	directed	graph	with	no	cycles
• Represent	precedence	relationships
• “this”	comes	before	“that”
• “this”	is	prior	to	“that”

A	topological	ordering of	a	directed	graph	
is	a	labeling	of	the	nodes	so	that	all	edges	
point	“forward”,	meaning	for	all	directed	
edges	 𝑣K, 𝑣L , 𝑗 > 𝑖

𝑣D 𝑣E

𝑣F𝑣G

𝑣H

𝑣I

𝑣J

𝑣D 𝑣E 𝑣F 𝑣G𝑣H 𝑣I 𝑣J



Two	problems	in	one

Problem	1:	Is	𝐺 a	DAG?
• We	know	how	to	get	an	answer	using	DFS!

Problem	2:	Given	a	directed	graph,	can	it	be	topologically	ordered?

Claim:	𝐺 has	a	topological	ordering	if	and	only	if	𝐺 is	a	DAG
• We	will	design	an	algorithm	that	either	outputs	a	topological	ordering	or	that	
the	graph	is	not	a	DAG



Two	problems	in	one
Observation:	
In	a	topological	

ordering,	there	is	a	
node	with	no	incoming	

edges!

𝑣D 𝑣E 𝑣F 𝑣G𝑣H 𝑣I 𝑣J

s

Observation:	
In	a	DAG,	there	is	a	node	
with	no	incoming	edges!

Check	by	following		incoming	links	backwards	
until	you	find	a	node	that	has	none.



Does	every	DAG	have	a	node	with	no	
incoming	edges?
Claim:	For	every	DAG	on	𝑛 ∈ ℕ nodes,	there	is	a	topological	ordering.

Lemma	(from	previous	slide):	Every	DAG	has	a	node	with	no	incoming	edges.

We	can	prove	this	by	induction	on	𝑛.

Base	case:	𝑛 = 1;	trivially	true

Inductive	step:	
• Assume	topological	ordering	exists	for	DAGS	up	to	𝑛 nodes.	
• Given	a	dag	on	𝑛 + 1 nodes,	identify	a	node	with	no	incoming	
edges.	
• Remove	this	node,	and	the	remaining	DAG	on	𝑛 nodes	has	a	
topological	ordering.		
• Since	the	node	we	removed	has	no	incoming	edges,	it	can	be	
trivially	added	to	the	beginning	of	the	ordering.	Hence	the	claim.



Does	every	DAG	have	a	node	with	no	
incoming	edges?
Claim:	For	every	DAG	on	𝑛 ∈ ℕ nodes,	there	is	a	topological	ordering.

Lemma	(from	previous	slide):	Every	DAG	has	a	node	with	no	incoming	edges.

We	can	prove	this	by	induction	on	𝑛.

Base	case:	𝑛 = 1;	trivially	true

Inductive	step:	
• Assume	topological	ordering	exists	for	DAGS	up	to	𝑛 nodes.	
• Given	a	dag	on	𝑛 + 1 nodes,	identify	a	node	with	no	incoming	
edges.	
• Remove	this	node,	and	the	remaining	DAG	on	𝑛 nodes	has	a	
topological	ordering.		
• Since	the	node	we	removed	has	no	incoming	edges,	it	can	be	
trivially	added	to	the	beginning	of	the	ordering.	Hence	the	claim.



Does	every	DAG	have	a	node	with	no	
incoming	edges?
Claim:	For	every	DAG	on	𝑛 ∈ ℕ nodes,	there	is	a	topological	ordering.

Lemma	(from	previous	slide):	Every	DAG	has	a	node	with	no	incoming	edges.

We	can	prove	this	by	induction	on	𝑛.

Base	case:	𝑛 = 1;	trivially	true

Inductive	step:	
• Assume	topological	ordering	exists	for	DAGs	up	to	𝑛 nodes.	
• Given	a	dag	on	𝑛 + 1 nodes,	identify	a	node	with	no	incoming	
edges.	
• Remove	this	node,	and	the	remaining	DAG	on	𝑛 nodes	has	a	
topological	ordering.		
• Since	the	node	we	removed	has	no	incoming	edges,	it	can	be	
trivially	added	to	the	beginning	of	the	ordering.	Hence	the	claim.



Does	every	DAG	have	a	node	with	no	
incoming	edges?
Claim:	For	every	DAG	on	𝑛 ∈ ℕ nodes,	there	is	a	topological	ordering.

Lemma	(from	previous	slide):	Every	DAG	has	a	node	with	no	incoming	edges.

We	can	prove	this	by	induction	on	𝑛.

Base	case:	𝑛 = 1;	trivially	true

Inductive	step:	
• Assume	topological	ordering	exists	for	DAGs	up	to	𝑛 nodes.	
• Given	a	dag	on	𝑛 + 1 nodes,	identify	a	node	with	no	incoming	
edges.	We	know	at	least	one	exists.	
• Remove	this	node,	and	the	remaining	DAG	on	𝑛 nodes	has	a	
topological	ordering.		
• Since	the	node	we	removed	has	no	incoming	edges,	it	can	be	
trivially	added	to	the	beginning	of	the	ordering.	Hence	the	claim.



Does	every	DAG	have	a	node	with	no	
incoming	edges?
Claim:	For	every	DAG	on	𝑛 ∈ ℕ nodes,	there	is	a	topological	ordering.

Lemma	(from	previous	slide):	Every	DAG	has	a	node	with	no	incoming	edges.

We	can	prove	this	by	induction	on	𝑛.

Base	case:	𝑛 = 1;	trivially	true

Inductive	step:	
• Assume	topological	ordering	exists	for	DAGs	up	to	𝑛 nodes.	
• Given	a	dag	on	𝑛 + 1 nodes,	identify	a	node	with	no	incoming	
edges.	We	know	at	least	one	exists.	
• Remove	this	node,	and	the	remaining	DAG	on	𝑛 nodes	has	a	
topological	ordering	by	the	inductive	hypothesis.		
• Since	the	node	we	removed	has	no	incoming	edges,	it	can	be	
trivially	added	to	the	beginning	of	the	ordering.	Hence	the	claim.



Does	every	DAG	have	a	node	with	no	
incoming	edges?
Claim:	For	every	DAG	on	𝑛 ∈ ℕ nodes,	there	is	a	topological	ordering.

Lemma	(from	previous	slide):	Every	DAG	has	a	node	with	no	incoming	edges.

We	can	prove	this	by	induction	on	𝑛.

Base	case:	𝑛 = 1;	trivially	true

Inductive	step:	
• Assume	topological	ordering	exists	for	DAGs	up	to	𝑛 nodes.	
• Given	a	dag	on	𝑛 + 1 nodes,	identify	a	node	with	no	incoming	
edges.	We	know	at	least	one	exists.	
• Remove	this	node,	and	the	remaining	DAG	on	𝑛 nodes	has	a	
topological	ordering	by	the	inductive	hypothesis.		
• Since	the	node	we	removed	has	no	incoming	edges,	it	can	be	
trivially	added	to	the	beginning	of	the	ordering.	Hence	the	claim.



Topological	Orderings

Claim:	Ordering	nodes	by	decreasing	post-order	gives	a	topological	
ordering.

Example:
u c

ba

Vertex u a b c
Postorder 4 1 3 2



Topological	Orderings

Claim:	Ordering	nodes	by	decreasing	post-order	gives	a	topological	
ordering.

Example:
u c

ba

Vertex u a b c
Postorder 4 1 3 2

u cb a

4 3 2 1



Topological	Orderings

Claim:	Ordering	nodes	by	decreasing	post-order	gives	a	topological	
ordering.

Example:
u c

ba

Vertex u a b c
Postorder 4 1 3 2

u cb a

4 3 2 1



Topological	Orderings

Claim:	Ordering	nodes	by	decreasing	post-order	gives	a	topological	
ordering.

Proof:
• We	know	that	a	DAG	has	no	backward	edges,	since	backward	edges	imply	the	
presence	of	cycles.
• Suppose	the	decreasing	post-ordering	is	not	a	topological	ordering

• There	must	be	an	edge	(𝑢, 𝑣)	such	that	postorder[𝑢]	<	postorder[𝑣]
• But	such	an	edge	would	be	a	backward	edge,	implying	a	cycle
• We	showed	such	an	edge	can’t	exist	in	a	DAG.	Contradiction!



Topological	Ordering	Wrap

A	DAG	is	a	directed	graph	with	no	cycles.

For	any	DAG,	we	can	find	a	topological	ordering	in	𝑂(𝑛 +𝑚) time	using	DFS,	
since	a	reverse	post-ordering	is	a	topological	ordering.

If	we	are	not	sure	our	input	graph	is	a	DAG,	we	can	still	use	DFS	to	identify	
backwards	edges	in	the	DFS	tree,	which	imply	cycles.

TopologicalOrdering(𝐺 = (𝑉, 𝐸)):
Run DFS(𝐺) with post-order
If ∃V,W	𝑠. 𝑡.	postorder[𝑢] < postorder[𝑣]:
Return False

Else:
Return reverse(postorder)



Shortest	Paths



Shortest	Paths:	Definition

The	shortest	path	between	nodes	𝑠 and	𝑡 is	the	path	between	the	two	
nodes	with	the	fewest	edges.

We	can	define	the	distance 𝑑(𝑢, 𝑣) between	two	nodes	as	the	length	of	the	
shortest	path	between	them.	

The	length	of	the	longest	shortest	path	in	a	graph	is	called	the	diameter.
u c

ba d

e



Shortest	paths:	Who	cares?
We	may	be	interested	in	the	shortest	
path	between	two	nodes	for	many	

applications	that	involve	things	moving	
through	networked	systems,	such	as	

navigation	software	(e.g.	Google	Maps),		
routing	internet	traffic,	or	shipping	cargo	

around	the	world

Tendency	of	a	node	to	appear	in	
shortest	paths	is	a	measure	of	node	

centrality.	

Centrality	measures	the	“importance”	
of	a	node	to	various	phenomena	
relevant	to	a	graph.	Highly	central	

nodes	often	play	a	role	in	how	things	
spread	through	networks	(like,	say,	I	
don’t	know,	an	infectious	disease).

We	can	also	use	shortest	paths	to	
measure	the	“size”	of	a	network,	
since	the	longest	shortest	path	

between	any	two	nodes	in	a	network	
is	called	its	“diameter”



Shortest	paths:	Who	cares?
We	may	be	interested	in	the	shortest	
path	between	two	nodes	for	many	

applications	that	involve	things	moving	
through	networked	systems,	such	as	

navigation	software	(e.g.	Google	Maps),		
routing	internet	traffic,	or	shipping	cargo	

around	the	world

Tendency	of	a	node	to	appear	in	
shortest	paths	is	a	measure	of	node	

centrality.	

Centrality	measures	the	“importance”	
of	a	node	to	various	phenomena	
relevant	to	a	graph.	Highly	central	

nodes	often	play	a	role	in	how	things	
spread	through	networks	(like,	say,	I	
don’t	know,	an	infectious	disease).

We	can	also	use	shortest	paths	to	
measure	the	“size”	of	a	network,	
since	the	longest	shortest	path	

between	any	two	nodes	in	a	network	
is	called	its	“diameter”



Shortest	paths:	Who	cares?
We	may	be	interested	in	the	shortest	
path	between	two	nodes	for	many	

applications	that	involve	things	moving	
through	networked	systems,	such	as	

navigation	software	(e.g.	Google	Maps),		
routing	internet	traffic,	or	shipping	cargo	

around	the	world

Tendency	of	a	node	to	appear	in	
shortest	paths	is	a	measure	of	node	

centrality.	

Centrality	measures	the	“importance”	
of	a	node	to	various	phenomena	
relevant	to	a	graph.	Highly	central	

nodes	often	play	a	role	in	how	things	
spread	through	networks	(like,	say,	I	
don’t	know,	an	infectious	disease).

We	can	also	use	shortest	paths	to	
measure	the	“size”	of	a	network,	
since	the	longest	shortest	path	

between	any	two	nodes	in	a	network	
is	called	its	“diameter”



Shortest	paths:	Who	cares?
We	may	be	interested	in	the	shortest	
path	between	two	nodes	for	many	

applications	that	involve	things	moving	
through	networked	systems,	such	as	

navigation	software	(e.g.	Google	Maps),		
routing	internet	traffic,	or	shipping	cargo	

around	the	world

Tendency	of	a	node	to	appear	in	
shortest	paths	is	a	measure	of	node	

centrality called	betweenness.	

Centrality	measures	the	“importance”	
of	a	node	to	various	phenomena	
relevant	to	a	graph.	Highly	central	

nodes	often	play	a	role	in	how	things	
spread	through	networks	(like,	say,	an	

infectious	disease).

We	can	also	use	shortest	paths	to	
measure	the	“size”	of	a	network,	
since	the	longest	shortest	path	

between	any	two	nodes	in	a	network	
is	called	its	“diameter”



Shortest	paths:	Who	cares?
We	may	be	interested	in	the	shortest	
path	between	two	nodes	for	many	

applications	that	involve	things	moving	
through	networked	systems,	such	as	

navigation	software	(e.g.	Google	Maps),		
routing	internet	traffic,	or	shipping	cargo	

around	the	world

Tendency	of	a	node	to	appear	in	
shortest	paths	is	a	measure	of	node	

centrality called	betweenness.	

Centrality	measures	the	“importance”	
of	a	node	to	various	phenomena	
relevant	to	a	graph.	Highly	central	

nodes	often	play	a	role	in	how	things	
spread	through	networks	(like,	say,	an	

infectious	disease).

We	can	also	use	shortest	paths	to	
measure	the	“size”	of	a	network,	
since	the	longest	shortest	path	

between	any	two	nodes	in	a	network	
is	called	its	“diameter”

We	are	going	to	use	
shortest	paths	to	compute	
betweenness centrality!	



Betweenness Centrality

Betweenness	centrality	is	used	as	a	proxy	for	the	importance	of	a	node	in	facilitating	
connections	between	other	nodes.

For	node	𝑢,	betweenness is	measured	as	the	ratio	of	shortest	paths	between	all	other	pairs	
of	nodes	(𝑠, 𝑡)	that	𝑢 lies	on.	Formally:

𝐵 𝑢 = \
𝜎^_(𝑢)
𝜎^_

�

^a_aV
Where	𝜎^_ is	the	number	of	shortest	paths	between	nodes	𝑠 and	𝑡 and	𝜎^_(𝑢) is	the	
number	of	those	shortest	paths	that	include	𝑢.



Betweenness Centrality

Betweenness	centrality	is	used	as	a	proxy	for	the	importance	of	a	node	in	facilitating	
connections	between	other	nodes.

For	node	𝑢,	betweenness is	measured	as	the	ratio	of	shortest	paths	between	all	other	pairs	
of	nodes	(𝑠, 𝑡)	that	𝑢 lies	on.	Formally:

𝐵 𝑢 = \
𝜎^_(𝑢)
𝜎^_

�

^a_aV
Where	𝜎^_ is	the	number	of	shortest	paths	between	nodes	𝑠 and	𝑡 and	𝜎^_(𝑢) is	the	
number	of	those	shortest	paths	that	include	𝑢.

u c

ba

e



How	do	we	compute	shortest	paths?

To	compute	betweenness centrality,	we	need	to	compute	shortest	
paths	for	all	pairs	of	nodes.	

Rather	than	jumping	straight	there,	let’s	first	solve	a	simpler	problem:	
finding	the	length	of	the	shortest	path	from	a	single	node	𝑠 to	all	other	
nodes	in	the	graph	(called	the	single	source	shortest	path problem)

We	can	use	BFS!



Single	Source	Shortest	Paths	with	BFS

dist[𝑣]	stores	the	current	estimate	of	
the	distance	between	our	source	node	
𝑠 and	the	node	𝑣,	initialized	to	infinity

We	walk	along	every	edge	of	the	graph	
and	check	whether	the	distance	
currently	stored	for	𝑣 could	be	made	
shorter	by	routing	through	𝑢

If	yes,	we	update	the	distance,	and	
store	𝑢 as	the predecessor (similar	to	
parent)	of	𝑣 in	the	shortest	path

Once	BFS	is	done,	we	have	the	shortest	
path	length	from	𝑠 to	every	node	𝑣
stored	in	dist[𝑣] and	we	can	
recover	a	shortest	path	for	any	node	
by	following	pred back	to	𝑠

SSSP-BFS 𝑠 :
dist[𝑢]← ∞ for	all	𝑢 ∈ 𝑉
pred[𝑢]← 𝑛𝑢𝑙𝑙 for all 𝑢 ∈ 𝑉
dist[𝑠]← 0
Q ← 𝑠
While Q is not empty:
𝑢 ← Pull(Q)
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):

If dist[𝑣] > dist[𝑢] + 1:
dist[𝑣] = dist[𝑢] + 1
pred[𝑣] = 𝑢
Push(𝑄, 𝑣)

u c

ba

e



Next	time

More	shortest	paths	and	betweenness centrality!

No	new	suggested	reading

Work	on	homework	3!


