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Business

Still working on midterm grading — should be done soon!

Homework 3 is out, due Monday at midnight Boston time



Last time: Betweenness Centrality

Betweenness centrality is used as a proxy for the importance of a node in facilitating
connections between other nodes.

For node u, betweenness is measured as the ratio of shortest paths between all other pairs
of nodes (s, t) that u lies on. Formally:

B(u) = z o5t (1)

Ost
SFt+u
Where ag; is the number of shortest paths between nodes s and t and g, (u) is the

number of those shortest paths that include u.




Last time: How do we compute shortest paths?

To compute betweenness centrality, we need to compute shortest
paths for all pairs of nodes.

Rather than jumping straight there, let’s first solve a simpler problem:
finding the length of the shortest path from a single node s to all other
nodes in the graph (called the single source shortest path problem)

We can use BFS!



Last time: Single Source Shortest Paths with BFS

dist[v] stores the current estimate of
the distance between our source node
s and the node v, initialized to infinity

We walk along every edge of the graph
and check whether the distance
currently stored for v could be made
shorter by routing through u

If yes, we update the distance, and
store u as the predecessor (similar to
parent) of v in the shortest path

Once BFS is done, we have the shortest
path length from s to every node v
storedindist[v] and we can
recover a shortest path for any node
by following pred back to s

SSSP-BFS(s):
dist[u]< oo forallu € V
pred[u]< null for all ueVlV
dist[s]«< O
Q «s
While Q is not empty:
U« Pull(Q)
For v € Neighbors(u):

If dist[v] > dist[u] + 1:
dist[v] = dist[u] + 1
pred[v] = u
Push(Q,v)



Last time: Single Source Shortest Paths with BFS

dist[v] stores the current estimate of
the distance between our source node
s and the node v, initialized to infinity

We walk along every edge of the graph
and check whether the distance
currently stored for v could be made
shorter by routing through u

If yes, we update the distance, and
store u as the predecessor (similar to
parent) of v in the shortest path

Once BFS is done, we have the shortest
path length from s to every node v
storedindist[v] and we can
recover a shortest path for any node
by following pred back to s

When we compute
betweenness
centrality, we will
need all of the
paths! How?

SSSP-BFS(s):

dist[u]< oo forallu € V
pred[u]< null for all uevV
dist[s]«< O
Q «s
While Q is not empty:

U« Pull(Q)

For v € Neighbors(u):

If dist[v] > dist[u] + 1:

dist[v] = dist[u] + 1
pred[v] = u
Push(Q,v)



Recovering all paths from SSSP-BFS

SSSP-BFS(s):

A simple modification dist[u]e oo forallu € V

allows us to store all of the pEeelBle mml Eer ald ©EY
. dist[s]< 0

possible shortest paths. Q0 «s

While Q is not empty:
. . u <« Pull(Q)
We just need to adjust our For v € Neighbors(w):
pred[u] data structure to If dist[v] > dist[u] + 1:

store a list of predecessors, g;zzm - Zist[u] +1
rather than just one! Push (Q,v)



Recovering all paths from SSSP-BFS

A simple modification
allows us to store all of the
possible shortest paths.

We just need to adjust our
pred[u] data structure to
store a list of predecessors,
rather than just one!

SSSP-BFS(s):

dist|[u]« oo forallu € V
pred[u]< null for all ueVlV
dist[s]«< O
Q «s
While Q is not empty:

U« Pull(Q)

For v € Neighbors(u):

If dist[v] > dist[u] + 1:

dist[v] = dist[u] + 1
pred[v] = [u]
Push(Q,v)

Else If dist[v] = dist[u] + 1:
Append u to pred[v]
Push(Q,v)



All Pairs Shortest Paths with BFS

We have an algorithm for
computing shortest paths
from a single source

node to every other node

We need the shortest
paths for all pairs of
nodes (the all pairs
shortest paths problem)

One option: Just run
SSSP-BFS from every
node!

APSP-BFS(G = (V,E)):
For v eV:
SSSP-BFS (V)

Running time

For each of n nodes, we run a full BFS. BFS runs in
O(n + m) time. Therefore we have O(n(n + m)), or
0(n* + nm).



All Pairs Shortest Paths with BFS

We have an algorithm for

computing shortest paths APSP-BFS-Paths(G = (V, E)):

from a single source For s€V: |

node to every other node SSSP-BFS(s) // fills pred[u] V,
For teV:

If s#t and s> t:

We need the shortest paths[s,t] < RecoverPaths(s,t)

paths for all pairs of
nodes (the all pairs

shortest paths problem) Running time
. For each of n nodes, we run a full BFS. BFS runs in
N IoN:; run !
One optio Just ru O(n + m) time. Therefore we have O(n(n + m)), or
SSSP-BFS from every
0(n? + nm).
node!

RecoverPaths is 0(n), meaning the doubly nested
loop is O(n3), regardless of SSSP-BFS.



Betweenness Centrality

Now we can compute
betweenness centrality:

Betweenness(G):
paths < APSP-BFS-Paths (G )
B = ) st (1) ot sev
= —_— or s :
Ost For t€V:
S*t+u qE s s

_ denominator < |paths[s,t]]|
Where og; is the number of numerator < |paths[s,t] that contain u

shortest paths between nodes blu] += dZZZ‘;:ZZ‘Z;
sand t and g (u) is the

number of those shortest i

paths that include u.
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Betweenness Centrality

Now we can compute
betweenness centrality:

Betweenness(G):
paths < APSP-BFS-Paths (G )
B = ) st (1) ot sev
= or s :
Ost For t€V:
S*t+u qE s s

_ denominator < |paths[s,t]]|
Where og; is the number of numerator < |paths[s,t] that contain u

shortest paths between nodes blu] += dZZZ‘;:ZZ‘Z;
sand t and g (u) is the

number of those shortest i

paths that include u.

Question: Does all of this work on directed graphs?
Yes! With some modification to APSP-BFS-Paths to account for
when a path does not exist (dist[s,t]=0)



What about weighted graphs?

So far, we have only considered unweighted graphs, or equivalently graphs
with uniform weights.

We may want to find shortest paths in a weighted graph G = (V,E, W)
where W is a set of weights corresponding to the edges, e.g. W = (u, v, w)
where w is a nonnegative integer for all (u,v) € E.



Generalizing SSSP-BFS: Best First Search

We can modify our BFS based algorithm to
take edge weight into account

The distance corresponding to a path between
two nodes is now the sum of the edge weights
along the path

Modification requires taking a “global” view of
the graph — the next step in any traversal
algorithm involves choosing an edge to follow,
we will choose it in a smarter way.

Dijkstra’s Algorithm: choose the minimum
distance edge to try to update next using a
priority queue

Dijkstra’s algorithm is an example of a “best
first search” approach to graph traversal: we
have some criteria (known as a heuristic) for
choosing a good next node, so we use it.

SSSP-Dijkstra(s):
dist[u]e oo forallu € V
pred[u]«< null for all uevV
dist[s]«< 0
Q < (s,0)
While Q is not empty:
U < PullMinimum(Q)
For v € Neighbors(u):

If dist[v] > dist[u] + 1:
dist[v] = dist[u] + 1
pred[v] = [u]
PushOrReplace(Q,v,dist[V])

Else If dist[v] = dist[u] + 1:
Append u to pred[v]
PushOrReplace(Q,v,dist[V])



Dijkstra’s Algorithm: Demo

o)
B
7 9
L)
(e)

Example from Jon Uliman



Dijkstra’s Algorithm: Demo
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Dijkstra’s Algorithm: Demo
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Dijkstra’s Algorithm: Demo
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Dijkstra’s Algorithm: Demo
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Dijkstra’s Algorithm: Demo

Explore B

do(u)
dy(u)
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d;(u)
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Dijkstra’s Algorithm: Demo

Don’t need to
explore D

do(u)
dy(u)
d,(u)
d;(u)
d,(u)
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Dijkstra’s Algorithm: Demo

Maintain parent

pointers so we
can find the
shortest paths

do(u)
dy(u)
d,(u)
d;(u)
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Dijkstra: Why does it work?

At the beginning, we have only that the SSSP-Dijkstra(s):
distance from s to itself is 0, which is true by dist[u]« o forallu € V
assumption. pred[u]« null for all uevV
dist[s]«< 0
Q « (s5,0)

While Q is not empty:
U < PullMinimum(Q)
For v € Neighbors(u):

If dist[v] > dist[u] + 1:
dist[v] = dist[u] + 1
pred[v] = [u]
PushOrReplace(Q,v,dist[V])

Else If dist[v] = dist[u] + 1:
Append u to pred[v]
PushOrReplace(Q,v,dist[V])
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At the beginning, we have only that the SSSP-Dijkstra(s):

distance from s to itself is 0, which is true by dist[u]« o forallu € V

assumption. pred[u]« null for all uevV
dist[s]«< 0

First, we explore the neighborhood of s and Q <« (s,0)

set all distances to its neighbors correctly. While Q is not empty:

U < PullMinimum(Q)
For v € Neighbors(u):

If dist[v] > dist[u] + 1:
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Dijkstra: Why does it work?

At the beginning, we have only that the
distance from s to itself is O, which is true by
assumption.

First, we explore the neighborhood of s and
set all distances to its neighbors correctly.

Then we choose another node, call it v, and
correctly set all of the distances from s —
vy = t, wheret € Neighbors(v,).
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Dijkstra: Why does it work?

At the beginning, we have only that the
distance from s to itself is O, which is true by
assumption.

First, we explore the neighborhood of s and
set all distances to its neighbors correctly.

Then we choose another node, call it v, and
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vy = t, wheret € Neighbors(v,).

At the it"node, we set the correct distances

froms ~ v; ~ t, where t € Neighbors(v;).
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Dijkstra: Why does it work?

At the beginning, we have only that the
distance from s to itself is O, which is true by
assumption.

First, we explore the neighborhood of s and
set all distances to its neighbors correctly.

Then we choose another node, call it v, and
correctly set all of the distances from s —
vy = t, wheret € Neighbors(v,).

At the it"node, we set the correct distances

froms ~ v; ~ t, where t € Neighbors(v;).

Invariant: After we explore the it" node,
dist[u] is set correctly for all u visited so far

SSSP-Dijkstra(s):
dist[u]e oo forallu € V
pred[u]«< null for all uevV
dist[s]«< 0
Q < (s,0)
While Q is not empty:
U < PullMinimum(Q)
For v € Neighbors(u):

If dist[v] > dist[u] + 1:
dist[v] = dist[u] + 1
pred[v] = [u]
PushOrReplace(Q,v,dist[V])

Else If dist[v] = dist[u] + 1:
Append u to pred[v]
PushOrReplace(Q,v,dist[V])



P’ X

Dijkstra: Why does it work? oy

S
Invariant: After we explore the it" node, dist[u] is set correctly for all u visited so far

We want to prove that d;(v) = d;(u) + wy,, is the shortest path fromstovifvis
the next node in the priority queue. We showed this works fori = 1andi = 2.
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Consider the picture above, which represents two possibilities for paths from s to
some node v. The path P represents an actual shortest path, while P represents an
alternative path assuming some node y was actually a better next choice than v,
meaning that £ (P°) < ¢(P). We have:
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Invariant: After we explore the it" node, dist[u] is set correctly for all u visited so far

We want to prove that d;(v) = d;(u) + wy,, is the shortest path fromstovifvis
the next node in the priority queue. We showed this works fori = 1andi = 2.

Consider the picture above, which represents two possibilities for paths from s to
some node v. The path P represents an actual shortest path, while P represents an
alternative path assuming some node y was actually a better next choice than v,
meaning that £ (P°) < ¢(P). We have:

f(P\) = di(X) + ny + WyV
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= di(x) + Wyy Since wy,;, = 0
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= di (U) We chose v to explore, not y!



Dijkstra: Why does it work? oy

S
Invariant: After we explore the it" node, dist[u] is set correctly for all u visited so far

We want to prove that d;(v) = d;(u) + wy,, is the shortest path fromstovifvis
the next node in the priority queue. We showed this works fori = 1andi = 2.

Consider the picture above, which represents two possibilities for paths from s to
some node v. The path P represents an actual shortest path, while P represents an
alternative path assuming some node y was actually a better next choice than v,
meaning that £ (P°) < ¢(P). We have:

2(P) = d;j(%) + Wyy + Wyy

= di(x) + Wyy Since wy,;, = 0
> di(y) We know x is explored already
= di (U) We chose v to explore, not y!

= £(P) So £ (P") = £(P). Contradiction!



Dijkstra running time

Assuming our priority queue
supports insertion, update,
and extraction in O(log E)
time, this approach runsin

O(n + logkE)

SSSP-Dijkstra(s):
dist[u]e oo forallu € V
pred[u]«< null for all uevV
dist[s]«< 0
Q < (s,0)
While Q is not empty:
U < PullMinimum(Q)
For v € Neighbors(u):

If dist[v] > dist[u] + 1:
dist[v] = dist[u] + 1
pred[v] = [u]
PushOrReplace(Q,v,dist[V])

Else If dist[v] = dist[u] + 1:
Append u to pred[v]
PushOrReplace(Q,v,dist[V])



Floyd-Warshall

What about applications where negative edgeweights make sense?
* Transactions
* Chemical reactions
* Changes over time

The Floyd-Warshall algorithm is a dynamic programming solution to solving
the all-pairs-shortest-paths problem on weighted, directed graphs that have
no negative cycles.



Floyd-Warshall

What about applications where negative edgeweights make sense?
* Transactions
* Chemical reactions
* Changes over time

The Floyd-Warshall algorithm is a dynamic programming solution to solving
the all-pairs-shortest-paths problem on weighted, directed graphs that have
no negative cycles.

(sub)homework 4: Read/watch about Floyd-Warshall and translate recursive

definition and pseudocode into LaTeX!

* Will be concurrent with Homework 3 but due Tuesday at Midnight
* Released shortly after class

* Very easy LaTeX practice! Just translate something you are given into LaTex.



Next Time

Spanning trees and flow algorithms
Suggested Reading: Erickson Chapter 7 and Chapter 10 through 10.3

Keep working on homeworks, ask questions on Piazza, and have a great
weekend!



