Lecture 14: Shortest Paths

Tim LaRock
larock.t@northeastern.edu
bit.ly/cs3000syllabus

Business

Still working on midterm grading - should be done soon!
Homework 3 is out, due Monday at midnight Boston time

Last time: Betweenness Centrality

Betweenness centrality is used as a proxy for the importance of a node in facilitating connections between other nodes.

For node u, betweenness is measured as the ratio of shortest paths between all other pairs of nodes (s, t) that u lies on. Formally:

$$
B(u)=\sum_{s \neq t \neq u} \frac{\sigma_{s t}(u)}{\sigma_{s t}}
$$

Where $\sigma_{s t}$ is the number of shortest paths between nodes s and t and $\sigma_{s t}(u)$ is the number of those shortest paths that include u.

Last time: How do we compute shortest paths?

To compute betweenness centrality, we need to compute shortest paths for all pairs of nodes.

Rather than jumping straight there, let's first solve a simpler problem: finding the length of the shortest path from a single node s to all other nodes in the graph (called the single source shortest path problem)

We can use BFS!

Last time: Single Source Shortest Paths with BFS

dist[v] stores the current estimate of the distance between our source node s and the node v, initialized to infinity

We walk along every edge of the graph and check whether the distance currently stored for v could be made shorter by routing through u

If yes, we update the distance, and store u as the predecessor (similar to parent) of v in the shortest path

Once BFS is done, we have the shortest path length from s to every node v stored in dist [v] and we can recover a shortest path for any node by following pred back to s

```
SSSP-BFS(s):
    dist}[u]\leftarrow\infty\mathrm{ for all }u\in
    pred[u]\leftarrownull for all u\inV
    dist[s]\leftarrow0
    Q }\leftarrow
    While Q is not empty:
        u\leftarrow Pull(Q)
        For v E Neighbors(u):
            If dist[v] > dist[u] + 1:
            dist[v] = dist[u] + 1
            pred[v] = u
            Push(Q,v)
```


Last time: Single Source Shortest Paths with BFS

dist[v] stores the current estimate of the distance between our source node s and the node v, initialized to infinity

We walk along every edge of the graph and check whether the distance currently stored for v could be made shorter by routing through u

If yes, we update the distance, and store u as the predecessor (similar to parent) of v in the shortest path

Once BFS is done, we have the shortest path length from s to every node v stored in dist [v] and we can recover a shortest path for any node by following pred back to s

When we compute betweenness centrality, we will need all of the paths! How?

```
SSSP-BFS(s):
    dist[u]\leftarrow\infty for all }u\in
    pred[u]\leftarrownull for all }u\in
    dist[s]\leftarrow0
    Q \leftarrows
    While Q is not empty:
        u}\leftarrow\textrm{Pull}(Q
        For v\inNeighbors(u):
            If dist[v] > dist[u] + 1:
            dist[v] = dist[u] + 1
            pred[v] = u
            Push(Q,v)
```


Recovering all paths from SSSP-BFS

A simple modification allows us to store all of the possible shortest paths.

We just need to adjust our pred $[u]$ data structure to store a list of predecessors, rather than just one!

```
SSSP-BFS(s):
    dist}[u]\leftarrow\infty\mathrm{ for all }u\in
    pred[u]\leftarrow null for all }u\in
    dist[s]}\leftarrow
    Q}\leftarrow
    While Q is not empty:
        u\leftarrow Pull(Q)
        For v N Neighbors(u):
            If dist[v] > dist[u] + 1:
            dist[v] = dist[u] + 1
            pred[v] = u
            Push(Q,v)
```


Recovering all paths from SSSP-BFS

A simple modification allows us to store all of the possible shortest paths.

We just need to adjust our pred $[u]$ data structure to store a list of predecessors, rather than just one!


```
SSSP-BFS(s):
    dist}[u]\leftarrow\infty\mathrm{ for all }u\in
    pred[u]\leftarrow null for all }u\in
    dist[s]\leftarrow0
    Q}\leftarrow
    While Q is not empty:
        u\leftarrow Pull(Q)
        For v E Neighbors(u):
            If dist[v] > dist[u] + 1:
            dist[v] = dist[u] + 1
            pred[v] = [u]
            Push(Q,v)
            Else If dist[v] = dist[u] + 1:
                Append }u\mathrm{ to pred[v]
            Push(Q,v)
```


All Pairs Shortest Paths with BFS

We have an algorithm for computing shortest paths from a single source node to every other node

We need the shortest paths for all pairs of nodes (the all pairs shortest paths problem)

Running time
\section*{Running}

One option: Just run SSSP-BFS from every node!

```
APSP-BFS}(G=(V,E))
```

APSP-BFS}(G=(V,E))
For v\inV:
For v\inV:
SSSP-BFS(v)

```
        SSSP-BFS(v)
```

For each of n nodes, we run a full BFS. BFS runs in $O(n+m)$ time. Therefore we have $O(n(n+m))$, or $O\left(n^{2}+n m\right)$.

All Pairs Shortest Paths with BFS

We have an algorithm for computing shortest paths from a single source node to every other node

We need the shortest paths for all pairs of nodes (the all pairs shortest paths problem)

One option: Just run SSSP-BFS from every node!

```
APSP-BFS-Paths(G = (V,E)):
    For s\inV:
        SSSP-BFS(S) // fills pred[u] }\mp@subsup{\forall}{u}{
        For }t\inV\mathrm{ :
            If }s\not=t\mathrm{ and }s>t
            paths[s,t] \leftarrow RecoverPaths(s,t)
```

 Running time
 For each of n nodes, we run a full BFS. BFS runs in $O(n+m)$ time. Therefore we have $O(n(n+m))$, or

$$
O\left(n^{2}+n m\right)
$$

RecoverPaths is $O(n)$, meaning the doubly nested loop is $O\left(n^{3}\right)$, regardless of SSSP-BFS.

Betweenness Centrality

Now we can compute betweenness centrality:

$$
B(u)=\sum_{s \neq t \neq u} \frac{\sigma_{s t}(u)}{\sigma_{s t}}
$$

Where $\sigma_{s t}$ is the number of shortest paths between nodes s and t and $\sigma_{s t}(u)$ is the number of those shortest
Return b

```
Betweenness(G):
```

Betweenness(G):
paths }\leftarrow\mathrm{ APSP-BFS-Paths(G)
paths }\leftarrow\mathrm{ APSP-BFS-Paths(G)
For }u\inV\mathrm{ :
For }u\inV\mathrm{ :
For s\inV:
For s\inV:
For t\inV:
For t\inV:
if s\not=t:
if s\not=t:
denominator }\leftarrow|\mathrm{ paths[s,t]|
denominator }\leftarrow|\mathrm{ paths[s,t]|
numerator }\leftarrow|\mathrm{ paths[s,t] that contain u|
numerator }\leftarrow|\mathrm{ paths[s,t] that contain u|
b[u]+=\frac{\mathrm{ numerator }}{\mathrm{ denominator}}

```
                b[u]+=\frac{\mathrm{ numerator }}{\mathrm{ denominator}}
```


Betweenness Centrality

Now we can compute betweenness centrality:

$$
B(u)=\sum_{s \neq t \neq u} \frac{\sigma_{s t}(u)}{\sigma_{s t}}
$$

Where $\sigma_{s t}$ is the number of shortest paths between nodes s and t and $\sigma_{s t}(u)$ is the number of those shortest paths that include u.

```
Betweenness(G):
    paths \leftarrow APSP-BFS-Paths (G)
    For }u\inV\mathrm{ :
        For s\inV:
            For t\inV:
            if }s\not=t
                denominator }\leftarrow|\mathrm{ paths[s,t]|
                numerator }\leftarrow|paths[s,t] that contain u|
```


Return b

Question: Does all of this work on directed graphs?

Betweenness Centrality

Now we can compute betweenness centrality:

$$
B(u)=\sum_{s \neq t \neq u} \frac{\sigma_{s t}(u)}{\sigma_{s t}}
$$

Where $\sigma_{s t}$ is the number of shortest paths between nodes s and t and $\sigma_{s t}(u)$ is the number of those shortest paths that include u.

```
Betweenness(G):
    paths \leftarrowAPSP-BFS-Paths(G)
    For }u\inV\mathrm{ :
        For s}\inV
            For t\inV:
            if }s\not=t
                denominator }\leftarrow|\mathrm{ paths[s,t]|
                numerator }\leftarrow|paths[s,t] that contain u|
```


Return b

Question: Does all of this work on directed graphs?
Yes! With some modification to APSP-BFS-Paths to account for when a path does not exist ($\operatorname{dist}[\mathrm{s}, \mathrm{t}]=\infty$)

What about weighted graphs?

So far, we have only considered unweighted graphs, or equivalently graphs with uniform weights.

We may want to find shortest paths in a weighted graph $G=(V, E, W)$ where W is a set of weights corresponding to the edges, e.g. $\mathrm{W}=(u, v, w)$ where w is a nonnegative integer for all $(\mathrm{u}, \mathrm{v}) \in E$.

Generalizing SSSP-BFS: Best First Search

We can modify our BFS based algorithm to take edge weight into account

The distance corresponding to a path between two nodes is now the sum of the edge weights along the path

Modification requires taking a "global" view of the graph - the next step in any traversal algorithm involves choosing an edge to follow, we will choose it in a smarter way.

Dijkstra's Algorithm: choose the minimum distance edge to try to update next using a priority queue

Dijkstra's algorithm is an example of a "best first search" approach to graph traversal: we have some criteria (known as a heuristic) for choosing a good next node, so we use it.

```
SSSP-Dijkstra(s):
    dist}[u]\leftarrow\infty\mathrm{ for all }u\in
    pred[u]}\leftarrow\mathrm{ null for all }u\in
    dist[s]\leftarrow0
    Q }\leftarrow(s,0
    While Q is not empty:
        u\leftarrow PullMinimum(Q)
        For v 
            If dist[v] > dist[u] + 1:
                dist[v] = dist[u] + 1
                pred[v] = [u]
                PushOrReplace(Q,v,dist[v])
            Else If dist[v] = dist[u] + 1:
                Append u to pred[v]
                PushOrReplace(Q,v,dist[v])
```


Dijkstra's Algorithm: Demo

Dijkstra's Algorithm: Demo

Dijkstra's Algorithm: Demo

Dijkstra's Algorithm: Demo

Dijkstra's Algorithm: Demo

Explore E

	A	B	C	D	E
$d_{0}(u)$	0	∞	∞	∞	∞
$d_{1}(u)$	0	10	3	∞	∞
$d_{2}(u)$	0	7	3	11	5
$d_{3}(u)$	0	7	3	11	5

Dijkstra's Algorithm: Demo

Explore B

	A	B	C	D	E
$d_{0}(u)$	$\mathbf{0}$	∞	∞	∞	∞
$d_{1}(u)$	0	10	3	∞	∞
$d_{2}(u)$	0	7	3	11	5
$d_{3}(u)$	0	7	3	11	5
$d_{4}(u)$	0	7	3	9	5

$$
S=\{A, C, E, B\}
$$

Dijkstra's Algorithm: Demo

Don't need to explore D

	A	B	C	D	E
$d_{0}(u)$	$\mathbf{0}$	∞	∞	∞	∞
$d_{1}(u)$	$\mathbf{0}$	$\mathbf{1 0}$	$\mathbf{3}$	∞	∞
$d_{2}(u)$	$\mathbf{0}$	$\mathbf{7}$	$\mathbf{3}$	11	5
$d_{3}(u)$	$\mathbf{0}$	$\mathbf{7}$	$\mathbf{3}$	11	5
$d_{4}(u)$	$\mathbf{0}$	$\mathbf{7}$	$\mathbf{3}$	$\mathbf{9}$	5

$$
S=\{A, C, E, B, D\}
$$

Dijkstra's Algorithm: Demo

Maintain parent pointers so we can find the shortest paths

	A	B	C	D	E
$d_{0}(u)$	$\mathbf{0}$	∞	∞	∞	∞
$d_{1}(u)$	$\mathbf{0}$	10	3	∞	∞
$d_{2}(u)$	$\mathbf{0}$	$\mathbf{7}$	$\mathbf{3}$	11	5
$d_{3}(u)$	$\mathbf{0}$	$\mathbf{7}$	$\mathbf{3}$	11	5
$d_{4}(u)$	$\mathbf{0}$	$\mathbf{7}$	$\mathbf{3}$	9	5

Dijkstra: Why does it work?

At the beginning, we have only that the distance from s to itself is 0 , which is true by assumption.

```
SSSP-Dijkstra(s):
    dist}[u]\leftarrow\infty\mathrm{ for all }u\in
    pred[u]}\leftarrow\mathrm{ null for all }u\in
    dist[s]}\leftarrow
    Q \leftarrow(s,0)
    While Q is not empty:
        u\leftarrow PullMinimum(Q)
        For v\inNeighbors(u):
            If dist[v] > dist[u] + 1:
                dist[v] = dist[u] + 1
                pred[v] = [u]
                PushOrReplace(Q,v,dist[v])
            Else If dist[v] = dist[u] + 1:
                Append u to pred[v]
                PushOrReplace(Q,v,dist[v])
```


Dijkstra: Why does it work?

At the beginning, we have only that the distance from s to itself is 0 , which is true by assumption.

First, we explore the neighborhood of s and set all distances to its neighbors correctly.

```
SSSP-Dijkstra(s):
    dist[u]}\leftarrow\infty\mathrm{ for all }u\in
    pred[u]\leftarrownull for all }u\in
    dist[s]\leftarrow0
    Q \leftarrow(s,0)
    While Q is not empty:
        u\leftarrow PullMinimum(Q)
        For v\inNeighbors(u):
            If dist[v] > dist[u] + 1:
                dist[v] = dist[u] + 1
                pred[v] = [u]
                PushOrReplace(Q,v,dist[v])
            Else If dist[v] = dist[u] + 1:
                Append u to pred[v]
                PushOrReplace(Q,v,dist[v])
```


Dijkstra: Why does it work?

At the beginning, we have only that the distance from s to itself is 0 , which is true by assumption.

First, we explore the neighborhood of s and set all distances to its neighbors correctly.

Then we choose another node, call it v_{1}, and correctly set all of the distances from $s \rightarrow$ $v_{1} \rightarrow t$, where $t \in \operatorname{Neighbors}\left(v_{1}\right)$.

```
SSSP-Dijkstra(s):
    dist[u]\leftarrow\infty for all }u\in
    pred[u]\leftarrownull for all }u\in
    dist[s]\leftarrow0
    Q}\leftarrow(s,0
    While Q is not empty:
        u\leftarrow PullMinimum(Q)
        For v\inNeighbors(u):
            If dist[v] > dist[u] + 1:
                dist[v] = dist[u] + 1
                pred[v] = [u]
                PushOrReplace(Q,v,dist[v])
            Else If dist[v] = dist[u] + 1:
                Append u to pred[v]
                PushOrReplace(Q,v,dist[v])
```


Dijkstra: Why does it work?

At the beginning, we have only that the distance from s to itself is 0 , which is true by assumption.

First, we explore the neighborhood of s and set all distances to its neighbors correctly.

Then we choose another node, call it v_{1}, and correctly set all of the distances from $s \rightarrow$ $v_{1} \rightarrow t$, where $t \in \operatorname{Neighbors}\left(v_{1}\right)$.

At the $i^{\text {th }}$ node, we set the correct distances from $s \leadsto v_{i} \leadsto t$, where $t \in \operatorname{Neighbors}\left(v_{i}\right)$.

```
SSSP-Dijkstra(s):
    dist[u]\leftarrow\infty for all }u\in
    pred[u]\leftarrownull for all }u\in
    dist[s]\leftarrow0
    Q \leftarrow(s,0)
    While Q is not empty:
        u\leftarrow PullMinimum(Q)
        For v\inNeighbors(u):
            If dist[v] > dist[u] + 1:
                dist[v] = dist[u] + 1
                pred[v] = [u]
                PushOrReplace(Q,v,dist[v])
            Else If dist[v] = dist[u] + 1:
                Append u to pred[v]
                PushOrReplace(Q,v,dist[v])
```


Dijkstra: Why does it work?

At the beginning, we have only that the distance from s to itself is 0 , which is true by assumption.

First, we explore the neighborhood of s and set all distances to its neighbors correctly.

Then we choose another node, call it v_{1}, and correctly set all of the distances from $s \rightarrow$ $v_{1} \rightarrow t$, where $t \in \operatorname{Neighbors}\left(v_{1}\right)$.

At the $i^{\text {th }}$ node, we set the correct distances from $s \leadsto v_{i} \leadsto t$, where $t \in \operatorname{Neighbors}\left(v_{i}\right)$.

Invariant: After we explore the $i^{\text {th }}$ node, $\operatorname{dist}[u]$ is set correctly for all u visited so far

```
SSSP-Dijkstra(s):
    dist}[u]\leftarrow\infty\mathrm{ for all }u\in
    pred[u]}\leftarrow\mathrm{ null for all }u\in
    dist[s]}\leftarrow
    Q }\leftarrow(s,0
    While Q is not empty:
        u\leftarrow PullMinimum(Q)
        For v N Neighbors(u):
            If dist[v] > dist[u] + 1:
                dist[v] = dist[u] + 1
                pred[v] = [u]
                PushOrReplace(Q,v,dist[v])
            Else If dist[v] = dist[u] + 1:
                Append u to pred[v]
                PushOrReplace(Q,v,dist[v])
```


Dijkstra: Why does it work?

Invariant: After we explore the $i^{\text {th }}$ node, $\operatorname{dist}[u]$ is set correctly for all u visited so far (v)
We want to prove that $d_{i}(v)=d_{i}(u)+w_{u v}$ is the shortest path from s to v if v is the next node in the priority queue. We showed this works for $i=1$ and $i=2$.

Dijkstra: Why does it work?

Invariant: After we explore the $i^{\text {th }}$ node, $\operatorname{dist}[u]$ is set correctly for all u visited so far (v)
We want to prove that $d_{i}(v)=d_{i}(u)+w_{u v}$ is the shortest path from s to v if v is the next node in the priority queue. We showed this works for $i=1$ and $i=2$.

Consider the picture above, which represents two possibilities for paths from s to some node v. The path P represents an actual shortest path, while P^{\prime} represents an alternative path assuming some node y was actually a better next choice than v, meaning that $\ell\left(P^{\prime}\right)<\ell(P)$. We have:

Dijkstra: Why does it work?

Invariant: After we explore the $i^{\text {th }}$ node, $\operatorname{dist}[u]$ is set correctly for all u visited so far (v)
We want to prove that $d_{i}(v)=d_{i}(u)+w_{u v}$ is the shortest path from s to v if v is the next node in the priority queue. We showed this works for $i=1$ and $i=2$.

Consider the picture above, which represents two possibilities for paths from s to some node v. The path P represents an actual shortest path, while P^{\prime} represents an alternative path assuming some node y was actually a better next choice than v, meaning that $\ell\left(P^{\prime}\right)<\ell(P)$. We have:

$$
\ell\left(P^{`}\right)=d_{i}(\mathrm{x})+\mathrm{w}_{\mathrm{xy}}+\mathrm{w}_{\mathrm{yv}}
$$

Dijkstra: Why does it work?

Invariant: After we explore the $i^{\text {th }}$ node, $\operatorname{dist}[u]$ is set correctly for all u visited so far (v)
We want to prove that $d_{i}(v)=d_{i}(u)+w_{u v}$ is the shortest path from s to v if v is the next node in the priority queue. We showed this works for $i=1$ and $i=2$.

Consider the picture above, which represents two possibilities for paths from s to some node v. The path P represents an actual shortest path, while P^{\prime} represents an alternative path assuming some node y was actually a better next choice than v, meaning that $\ell\left(P^{\prime}\right)<\ell(P)$. We have:

$$
\begin{aligned}
\ell\left(P^{\prime}\right) & =d_{i}(\mathrm{x})+\mathrm{w}_{\mathrm{xy}}+\mathrm{w}_{\mathrm{yv}} \\
& \geq d_{i}(x)+w_{x y} \quad \text { Since } w_{y v} \geq 0
\end{aligned}
$$

Dijkstra: Why does it work?

Invariant: After we explore the $i^{\text {th }}$ node, $\operatorname{dist}[u]$ is set correctly for all u visited so far (v)
We want to prove that $d_{i}(v)=d_{i}(u)+w_{u v}$ is the shortest path from s to v if v is the next node in the priority queue. We showed this works for $i=1$ and $i=2$.

Consider the picture above, which represents two possibilities for paths from s to some node v. The path P represents an actual shortest path, while $P^{`}$ represents an alternative path assuming some node y was actually a better next choice than v, meaning that $\ell\left(P^{\prime}\right)<\ell(P)$. We have:

$$
\begin{aligned}
\ell\left(P^{`}\right)=d_{i}(\mathrm{x})+\mathrm{w}_{\mathrm{xy}}+\mathrm{w}_{\mathrm{yv}} & \\
& \geq d_{i}(x)+w_{x y} \\
& \text { Since } w_{y v} \geq 0 \\
\geq d_{i}(y) & \text { We know } x \text { is explored already }
\end{aligned}
$$

Dijkstra: Why does it work?

Invariant: After we explore the $i^{\text {th }}$ node, $\operatorname{dist}[u]$ is set correctly for all u visited so far (v)
We want to prove that $d_{i}(v)=d_{i}(u)+w_{u v}$ is the shortest path from s to v if v is the next node in the priority queue. We showed this works for $i=1$ and $i=2$.

Consider the picture above, which represents two possibilities for paths from s to some node v. The path P represents an actual shortest path, while P^{\prime} represents an alternative path assuming some node y was actually a better next choice than v, meaning that $\ell\left(P^{\prime}\right)<\ell(P)$. We have:

$$
\begin{aligned}
\ell\left(P^{`}\right)=d_{i}(\mathrm{x})+\mathrm{w}_{\mathrm{xy}}+\mathrm{w}_{\mathrm{yv}} & \\
\geq d_{i}(x)+w_{x y} & \text { Since } w_{y v} \geq 0 \\
\geq d_{i}(y) & \text { We know } x \text { is explored already } \\
\geq d_{i}(v) & \text { We chose } v \text { to explore, not } y!
\end{aligned}
$$

Dijkstra: Why does it work?

Invariant: After we explore the $i^{\text {th }}$ node, $\operatorname{dist}[u]$ is set correctly for all u visited so far (v)
We want to prove that $d_{i}(v)=d_{i}(u)+w_{u v}$ is the shortest path from s to v if v is the next node in the priority queue. We showed this works for $i=1$ and $i=2$.

Consider the picture above, which represents two possibilities for paths from s to some node v. The path P represents an actual shortest path, while P^{\prime} represents an alternative path assuming some node y was actually a better next choice than v, meaning that $\ell\left(P^{\prime}\right)<\ell(P)$. We have:

$$
\begin{array}{rlr}
\ell\left(P^{\prime}\right)=d_{i}(\mathrm{x})+\mathrm{w}_{\mathrm{xy}}+\mathrm{w}_{\mathrm{yv}} & \\
\geq d_{i}(x)+w_{x y} & & \text { Since } w_{y v} \geq 0 \\
\geq d_{i}(y) & & \text { We know } x \text { is explored already } \\
\geq d_{i}(v) & & \text { We chose } v \text { to explore, not } y! \\
& =\ell(P) & \\
& \text { So } \ell\left(P^{\prime}\right) \geq \ell(P) . \text { Contradiction! }
\end{array}
$$

Dijkstra running time

Assuming our priority queue supports insertion, update, and extraction in $O(\log E)$ time, this approach runs in

$$
O(n+\log E)
$$

```
```

SSSP-Dijkstra(s):

```
```

SSSP-Dijkstra(s):
dist [u]\leftarrow\infty for all }u\in
dist [u]\leftarrow\infty for all }u\in
pred[u]\leftarrownull for all }u\in
pred[u]\leftarrownull for all }u\in
dist[s]\leftarrow0
dist[s]\leftarrow0
Q \leftarrow(s,0)
Q \leftarrow(s,0)
While Q is not empty:
While Q is not empty:
u\leftarrow PullMinimum(Q)
u\leftarrow PullMinimum(Q)
For v\inNeighbors(u):
For v\inNeighbors(u):
If dist[v] > dist[u] + 1:
If dist[v] > dist[u] + 1:
dist[v] = dist[u] + 1
dist[v] = dist[u] + 1
pred[v] = [u]
pred[v] = [u]
PushOrReplace(Q,v,dist[v])
PushOrReplace(Q,v,dist[v])
Else If dist[v] = dist[u] + 1:
Else If dist[v] = dist[u] + 1:
Append u to pred[v]
Append u to pred[v]
PushOrReplace(Q,v,dist[v])

```
```

 PushOrReplace(Q,v,dist[v])
    ```
```


Floyd-Warshall

What about applications where negative edgeweights make sense?

- Transactions
- Chemical reactions
- Changes over time

The Floyd-Warshall algorithm is a dynamic programming solution to solving the all-pairs-shortest-paths problem on weighted, directed graphs that have no negative cycles.

Floyd-Warshall

What about applications where negative edgeweights make sense?

- Transactions
- Chemical reactions
- Changes over time

The Floyd-Warshall algorithm is a dynamic programming solution to solving the all-pairs-shortest-paths problem on weighted, directed graphs that have no negative cycles.
(sub)homework 4: Read/watch about Floyd-Warshall and translate recursive definition and pseudocode into LaTeX!

- Will be concurrent with Homework 3 but due Tuesday at Midnight
- Released shortly after class
- Very easy LaTeX practice! Just translate something you are given into LaTex.

Next Time

Spanning trees and flow algorithms
Suggested Reading: Erickson Chapter 7 and Chapter 10 through 10.3
Keep working on homeworks, ask questions on Piazza, and have a great weekend!

