
Lecture	14:	Shortest	Paths
Tim	LaRock

larock.t@northeastern.edu
bit.ly/cs3000syllabus

Business

Still	working	on	midterm	grading	– should	be	done	soon!

Homework	3	is	out,	due	Monday	at	midnight	Boston	time

Last	time:	Betweenness Centrality

Betweenness	centrality	is	used	as	a	proxy	for	the	importance	of	a	node	in	facilitating	
connections	between	other	nodes.

For	node	𝑢,	betweenness is	measured	as	the	ratio	of	shortest	paths	between	all	other	pairs	
of	nodes	(𝑠, 𝑡)	that	𝑢 lies	on.	Formally:

𝐵 𝑢 = '
𝜎)*(𝑢)
𝜎)*

�

).*./
Where	𝜎)* is	the	number	of	shortest	paths	between	nodes	𝑠 and	𝑡 and	𝜎)*(𝑢) is	the	
number	of	those	shortest	paths	that	include	𝑢.

u c

ba

e

Last	time:	How	do	we	compute	shortest	paths?

To	compute	betweenness centrality,	we	need	to	compute	shortest	
paths	for	all	pairs	of	nodes.	

Rather	than	jumping	straight	there,	let’s	first	solve	a	simpler	problem:	
finding	the	length	of	the	shortest	path	from	a	single	node	𝑠 to	all	other	
nodes	in	the	graph	(called	the	single	source	shortest	path problem)

We	can	use	BFS!

Last	time:	Single	Source	Shortest	Paths	with	BFS

dist[𝑣]	stores	the	current	estimate	of	
the	distance	between	our	source	node	
𝑠 and	the	node	𝑣,	initialized	to	infinity

We	walk	along	every	edge	of	the	graph	
and	check	whether	the	distance	
currently	stored	for	𝑣 could	be	made	
shorter	by	routing	through	𝑢

If	yes,	we	update	the	distance,	and	
store	𝑢 as	the predecessor (similar	to	
parent)	of	𝑣 in	the	shortest	path

Once	BFS	is	done,	we	have	the	shortest	
path	length	from	𝑠 to	every	node	𝑣
stored	in	dist[𝑣] and	we	can	
recover	a	shortest	path	for	any	node	
by	following	pred back	to	𝑠

SSSP-BFS 𝑠 :
dist[𝑢]← ∞ for	all	𝑢 ∈ 𝑉
pred[𝑢]← 𝑛𝑢𝑙𝑙 for all 𝑢 ∈ 𝑉
dist[𝑠]← 0
Q ← 𝑠
While Q is not empty:
𝑢 ← Pull(Q)
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):

If dist[𝑣] > dist[𝑢] + 1:
dist[𝑣] = dist[𝑢] + 1
pred[𝑣] = 𝑢
Push(𝑄, 𝑣)

u c

ba

e

Last	time:	Single	Source	Shortest	Paths	with	BFS

dist[𝑣]	stores	the	current	estimate	of	
the	distance	between	our	source	node	
𝑠 and	the	node	𝑣,	initialized	to	infinity

We	walk	along	every	edge	of	the	graph	
and	check	whether	the	distance	
currently	stored	for	𝑣 could	be	made	
shorter	by	routing	through	𝑢

If	yes,	we	update	the	distance,	and	
store	𝑢 as	the predecessor (similar	to	
parent)	of	𝑣 in	the	shortest	path

Once	BFS	is	done,	we	have	the	shortest	
path	length	from	𝑠 to	every	node	𝑣
stored	in	dist[𝑣] and	we	can	
recover	a	shortest	path	for	any	node	
by	following	pred back	to	𝒔

SSSP-BFS 𝑠 :
dist[𝑢]← ∞ for	all	𝑢 ∈ 𝑉
pred[𝑢]← 𝑛𝑢𝑙𝑙 for all 𝑢 ∈ 𝑉
dist[𝑠]← 0
Q ← 𝑠
While Q is not empty:
𝑢 ← Pull(Q)
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):

If dist[𝑣] > dist[𝑢] + 1:
dist[𝑣] = dist[𝑢] + 1
pred[𝑣] = 𝑢
Push(𝑄, 𝑣)

u c

ba

eWhen	we	compute	
betweenness

centrality,	we	will	
need	all	of	the	
paths!	How?

Recovering	all	paths	from	SSSP-BFS
SSSP-BFS 𝑠 :
dist[𝑢]← ∞ for	all	𝑢 ∈ 𝑉
pred[𝑢]← 𝑛𝑢𝑙𝑙 for all 𝑢 ∈ 𝑉
dist[𝑠]← 0
Q ← 𝑠
While Q is not empty:
𝑢 ← Pull(Q)
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):

If dist[𝑣] > dist[𝑢] + 1:
dist[𝑣] = dist[𝑢] + 1
pred[𝑣] = 𝑢
Push(𝑄, 𝑣)

A	simple	modification	
allows	us	to	store	all	of	the	
possible	shortest	paths.

We	just	need	to	adjust	our	
pred[𝑢]	data	structure	to	
store	a	list of	predecessors,	
rather	than	just	one!

Recovering	all	paths	from	SSSP-BFS

A	simple	modification	
allows	us	to	store	all	of	the	
possible	shortest	paths.

We	just	need	to	adjust	our	
pred[𝑢]	data	structure	to	
store	a	list of	predecessors,	
rather	than	just	one!

SSSP-BFS 𝑠 :
dist[𝑢]← ∞ for	all	𝑢 ∈ 𝑉
pred[𝑢]← 𝑛𝑢𝑙𝑙 for all 𝑢 ∈ 𝑉
dist[𝑠]← 0
Q ← 𝑠
While Q is not empty:
𝑢 ← Pull(Q)
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):

If dist[𝑣] > dist[𝑢] + 1:
dist[𝑣] = dist[𝑢] + 1
pred[𝑣] = [𝑢]
Push(𝑄, 𝑣)

Else If dist[𝑣] = dist[𝑢] + 1:
Append 𝑢 to pred[𝑣]
Push(𝑄, 𝑣)

u c

ba

e

All	Pairs	Shortest	Paths	with	BFS

We	have	an	algorithm	for	
computing	shortest	paths	
from	a	single	source	
node	to	every	other	node

We	need	the	shortest	
paths	for	all	pairs of	
nodes	(the	all	pairs	
shortest	paths	problem)

One	option:	Just	run	
SSSP-BFS	from	every	
node!

APSP-BFS 𝐺 = (𝑉, 𝐸) :
For 𝑣 ∈ 𝑉:
SSSP-BFS(𝑣)

Running	time	

For	each	of	𝑛 nodes,	we	run	a	full	BFS.	BFS	runs	in	
𝑂(𝑛 + 𝑚) time.	Therefore	we	have	𝑂(𝑛 𝑛 + 𝑚),	or	

𝑂(𝑛P + 𝑛𝑚).	

All	Pairs	Shortest	Paths	with	BFS

APSP-BFS-Paths 𝐺 = (𝑉, 𝐸) :
For 𝑠 ∈ 𝑉:
SSSP-BFS(𝑠) // fills pred[𝑢]	∀/
For 𝑡 ∈ 𝑉:

If 𝑠 ≠ 𝑡 and 𝑠 > 𝑡:
paths[s,t] ← RecoverPaths(𝑠, 𝑡)

Running	time	

For	each	of	𝑛 nodes,	we	run	a	full	BFS.	BFS	runs	in	
𝑂(𝑛 + 𝑚) time.	Therefore	we	have	𝑂(𝑛 𝑛 + 𝑚),	or	

𝑂(𝑛P + 𝑛𝑚).	

RecoverPaths is	𝑂(𝑛),	meaning	the	doubly	nested	
loop	is	𝑂(𝑛T),	regardless	of	SSSP-BFS.

We	have	an	algorithm	for	
computing	shortest	paths	
from	a	single	source	
node	to	every	other	node

We	need	the	shortest	
paths	for	all	pairs of	
nodes	(the	all	pairs	
shortest	paths	problem)

One	option:	Just	run	
SSSP-BFS	from	every	
node!

Betweenness Centrality

Now	we	can	compute	
betweenness centrality:

𝐵 𝑢 = '
𝜎)*(𝑢)
𝜎)*

�

).*./

Where	𝜎)* is	the	number	of	
shortest	paths	between	nodes	
𝑠 and	𝑡 and	𝜎)*(𝑢) is	the	
number	of	those	shortest	
paths	that	include	𝑢.

Betweenness 𝐺 :
paths	← APSP-BFS-Paths(𝐺)
For 𝑢 ∈ 𝑉:

For 𝑠 ∈ 𝑉:
For 𝑡 ∈ 𝑉:
if 𝑠 ≠ 𝑡:
𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ←|paths[s,t]|
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 ←|paths[s,t] that contain 𝑢|
𝑏[𝑢] += X/YZ[*][

^ZX]Y_X*][

Return 𝑏

Betweenness Centrality

Now	we	can	compute	
betweenness centrality:

𝐵 𝑢 = '
𝜎)*(𝑢)
𝜎)*

�

).*./

Where	𝜎)* is	the	number	of	
shortest	paths	between	nodes	
𝑠 and	𝑡 and	𝜎)*(𝑢) is	the	
number	of	those	shortest	
paths	that	include	𝑢.

Betweenness 𝐺 :
paths	← APSP-BFS-Paths(𝐺)
For 𝑢 ∈ 𝑉:

For 𝑠 ∈ 𝑉:
For 𝑡 ∈ 𝑉:
if 𝑠 ≠ 𝑡:
𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ←|paths[s,t]|
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 ←|paths[s,t] that contain 𝑢|
𝑏[𝑢] += X/YZ[*][

^ZX]Y_X*][

Return 𝑏

Question: Does	all	of	this	work	on	directed	graphs?
Yes!	With	some	modification	to	APSP-BFS-Paths	to	account	for	

when	a	path	does	not	exist	(dist[s,t]=∞)

Betweenness Centrality

Now	we	can	compute	
betweenness centrality:

𝐵 𝑢 = '
𝜎)*(𝑢)
𝜎)*

�

).*./

Where	𝜎)* is	the	number	of	
shortest	paths	between	nodes	
𝑠 and	𝑡 and	𝜎)*(𝑢) is	the	
number	of	those	shortest	
paths	that	include	𝑢.

Betweenness 𝐺 :
paths	← APSP-BFS-Paths(𝐺)
For 𝑢 ∈ 𝑉:

For 𝑠 ∈ 𝑉:
For 𝑡 ∈ 𝑉:
if 𝑠 ≠ 𝑡:
𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ←|paths[s,t]|
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 ←|paths[s,t] that contain 𝑢|
𝑏[𝑢] += X/YZ[*][

^ZX]Y_X*][

Return 𝑏

Question: Does	all	of	this	work	on	directed	graphs?
Yes!	With	some	modification	to	APSP-BFS-Paths	to	account	for	

when	a	path	does	not	exist	(dist[s,t]=∞)

What	about	weighted	graphs?

So	far,	we	have	only	considered	unweighted	graphs,	or	equivalently	graphs	
with	uniform	weights.

We	may	want	to	find	shortest	paths	in	a	weighted	graph 𝐺 = 𝑉, 𝐸,𝑊
where	𝑊 is	a	set	of	weights	corresponding	to	the	edges,	e.g.	W = (𝑢, 𝑣, 𝑤)
where	𝑤 is	a	nonnegative	integer	for	all	 u, v ∈ 𝐸.

Generalizing	SSSP-BFS:	Best	First	Search

We	can	modify	our	BFS	based	algorithm	to	
take	edge	weight	into	account

The	distance	corresponding	to	a	path	between	
two	nodes	is	now	the	sum	of	the	edge	weights	
along	the	path

Modification	requires	taking	a	“global”	view	of	
the	graph	– the	next	step	in	any	traversal	
algorithm	involves	choosing	an	edge	to	follow,	
we	will	choose	it	in	a	smarter	way.	

Dijkstra’s	Algorithm:	choose	the	minimum	
distance	edge	to	try	to	update	next	using	a	
priority	queue

Dijkstra’s	algorithm	is	an	example	of	a	“best	
first	search”	approach	to	graph	traversal:	we	
have	some	criteria	(known	as	a	heuristic)	for	
choosing	a	good	next	node,	so	we	use	it.

SSSP-Dijkstra 𝑠 :
dist[𝑢]← ∞ for	all	𝑢 ∈ 𝑉
pred[𝑢]← 𝑛𝑢𝑙𝑙 for all 𝑢 ∈ 𝑉
dist[𝑠]← 0
Q ← (𝑠, 0)
While Q is not empty:
𝑢 ← PullMinimum(Q)
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
If dist[𝑣] > dist[𝑢] + 1:
dist[𝑣] = dist[𝑢] + 1
pred[𝑣] = [𝑢]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Else If dist[𝑣] = dist[𝑢] + 1:
Append 𝑢 to pred[𝑣]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

A

B D

C E

10

3

1 4 7 98

2

2

Dijkstra’s Algorithm:	Demo

Example	from	Jon	Ullman

Dijkstra’s Algorithm:	Demo

Initialize

A B C D E

d0(u) 0 ∞ ∞ ∞ ∞

𝑆 = {}

A

B D

C E

10

3

1 4 7 98

2

2

0

¥

¥ ¥

¥

Dijkstra’s Algorithm:	Demo

A B C D E

d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞

𝑆 = {𝐴}

A

B D

C E

10

3

1 4 7 98

2

2

0

10

3 ¥

¥
Explore	A

Dijkstra’s Algorithm:	Demo

A B C D E

d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞
d2(u) 0 7 3 11 5

𝑆 = {𝐴, 𝐶}

A

B D

C E

10

3

1 4 7 98

2

2

0

7

3 5

11
Explore	C

Dijkstra’s Algorithm:	Demo

A B C D E

d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞
d2(u) 0 7 3 11 5

d3(u) 0 7 3 11 5 𝑆 = {𝐴, 𝐶, 𝐸}

A

B D

C E

10

3

1 4 7 98

2

2

0

7

3 5

11
Explore	E

Dijkstra’s Algorithm:	Demo

A B C D E

d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞
d2(u) 0 7 3 11 5

d3(u) 0 7 3 11 5

d4(u) 0 7 3 9 5

𝑆 = {𝐴, 𝐶, 𝐸, 𝐵}

A

B D

C E

10

3

1 4 7 98

2

2

0

7

3 5

9
Explore	B

Dijkstra’s Algorithm:	Demo

A B C D E

d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞
d2(u) 0 7 3 11 5

d3(u) 0 7 3 11 5

d4(u) 0 7 3 9 5

𝑆 = {𝐴, 𝐶, 𝐸, 𝐵, 𝐷}

A

B D

C E

10

3

1 4 7 98

2

2

0

7

3 5

9
Don’t	need	to
explore	D

Dijkstra’s Algorithm:	Demo

A B C D E

d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞
d2(u) 0 7 3 11 5

d3(u) 0 7 3 11 5

d4(u) 0 7 3 9 5

A

B D

C E

10

3

1 4 7 98

2

2

0

7

3 5

9
Maintain	parent	
pointers	so	we	
can	find	the	
shortest	paths

Dijkstra:	Why	does	it	work?
At	the	beginning,	we	have	only	that	the	
distance	from	𝑠 to	itself	is	0,	which	is	true	by	
assumption.

First,	we	explore	the	neighborhood	of	𝑠 and	
set	all	distances	to	its	neighbors	correctly.

Then	we	choose	another	node,	call	it	𝑣k,	and	
correctly	set	all	of	the	distances	from	𝑠 →
𝑣k → 𝑡,	where	𝑡 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣k).

At	the	𝑖*mnode,	we	set	the	correct	distances	
from	𝑠 ↝ 𝑣_ ↝ 𝑡,	where	𝑡 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣_).

Invariant: After	we	explore	the	𝑖*m node,	
dist[𝑢]	is	set	correctly	for	all	𝑢 visited	so	far

SSSP-Dijkstra 𝑠 :
dist[𝑢]← ∞ for	all	𝑢 ∈ 𝑉
pred[𝑢]← 𝑛𝑢𝑙𝑙 for all 𝑢 ∈ 𝑉
dist[𝑠]← 0
Q ← (𝑠, 0)
While Q is not empty:
𝑢 ← PullMinimum(Q)
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
If dist[𝑣] > dist[𝑢] + 1:
dist[𝑣] = dist[𝑢] + 1
pred[𝑣] = [𝑢]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Else If dist[𝑣] = dist[𝑢] + 1:
Append 𝑢 to pred[𝑣]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Dijkstra:	Why	does	it	work?
At	the	beginning,	we	have	only	that	the	
distance	from	𝑠 to	itself	is	0,	which	is	true	by	
assumption.

First,	we	explore	the	neighborhood	of	𝑠 and	
set	all	distances	to	its	neighbors	correctly.

Then	we	choose	another	node,	call	it	𝑣k,	and	
correctly	set	all	of	the	distances	from	𝑠 →
𝑣k → 𝑡,	where	𝑡 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣k).

At	the	𝑖*mnode,	we	set	the	correct	distances	
from	𝑠 ↝ 𝑣_ ↝ 𝑡,	where	𝑡 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣_).

Invariant: After	we	explore	the	𝑖*m node,	
dist[𝑢]	is	set	correctly	for	all	𝑢 visited	so	far

SSSP-Dijkstra 𝑠 :
dist[𝑢]← ∞ for	all	𝑢 ∈ 𝑉
pred[𝑢]← 𝑛𝑢𝑙𝑙 for all 𝑢 ∈ 𝑉
dist[𝑠]← 0
Q ← (𝑠, 0)
While Q is not empty:
𝑢 ← PullMinimum(Q)
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
If dist[𝑣] > dist[𝑢] + 1:
dist[𝑣] = dist[𝑢] + 1
pred[𝑣] = [𝑢]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Else If dist[𝑣] = dist[𝑢] + 1:
Append 𝑢 to pred[𝑣]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Dijkstra:	Why	does	it	work?
At	the	beginning,	we	have	only	that	the	
distance	from	𝑠 to	itself	is	0,	which	is	true	by	
assumption.

First,	we	explore	the	neighborhood	of	𝑠 and	
set	all	distances	to	its	neighbors	correctly.

Then	we	choose	another	node,	call	it	𝑣k,	and	
correctly	set	all	of	the	distances	from	𝑠 →
𝑣k → 𝑡,	where	𝑡 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣k).

At	the	𝑖*mnode,	we	set	the	correct	distances	
from	𝑠 ↝ 𝑣_ ↝ 𝑡,	where	𝑡 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣_).

Invariant: After	we	explore	the	𝑖*m node,	
dist[𝑢]	is	set	correctly	for	all	𝑢 visited	so	far

SSSP-Dijkstra 𝑠 :
dist[𝑢]← ∞ for	all	𝑢 ∈ 𝑉
pred[𝑢]← 𝑛𝑢𝑙𝑙 for all 𝑢 ∈ 𝑉
dist[𝑠]← 0
Q ← (𝑠, 0)
While Q is not empty:
𝑢 ← PullMinimum(Q)
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
If dist[𝑣] > dist[𝑢] + 1:
dist[𝑣] = dist[𝑢] + 1
pred[𝑣] = [𝑢]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Else If dist[𝑣] = dist[𝑢] + 1:
Append 𝑢 to pred[𝑣]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Dijkstra:	Why	does	it	work?
At	the	beginning,	we	have	only	that	the	
distance	from	𝑠 to	itself	is	0,	which	is	true	by	
assumption.

First,	we	explore	the	neighborhood	of	𝑠 and	
set	all	distances	to	its	neighbors	correctly.

Then	we	choose	another	node,	call	it	𝑣k,	and	
correctly	set	all	of	the	distances	from	𝑠 →
𝑣k → 𝑡,	where	𝑡 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣k).

At	the	𝑖*mnode,	we	set	the	correct	distances	
from	𝑠 ↝ 𝑣_ ↝ 𝑡,	where	𝑡 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣_).

Invariant: After	we	explore	the	𝑖*m node,	
dist[𝑢]	is	set	correctly	for	all	𝑢 visited	so	far

SSSP-Dijkstra 𝑠 :
dist[𝑢]← ∞ for	all	𝑢 ∈ 𝑉
pred[𝑢]← 𝑛𝑢𝑙𝑙 for all 𝑢 ∈ 𝑉
dist[𝑠]← 0
Q ← (𝑠, 0)
While Q is not empty:
𝑢 ← PullMinimum(Q)
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
If dist[𝑣] > dist[𝑢] + 1:
dist[𝑣] = dist[𝑢] + 1
pred[𝑣] = [𝑢]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Else If dist[𝑣] = dist[𝑢] + 1:
Append 𝑢 to pred[𝑣]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Dijkstra:	Why	does	it	work?
At	the	beginning,	we	have	only	that	the	
distance	from	𝑠 to	itself	is	0,	which	is	true	by	
assumption.

First,	we	explore	the	neighborhood	of	𝑠 and	
set	all	distances	to	its	neighbors	correctly.

Then	we	choose	another	node,	call	it	𝑣k,	and	
correctly	set	all	of	the	distances	from	𝑠 →
𝑣k → 𝑡,	where	𝑡 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣k).

At	the	𝑖*mnode,	we	set	the	correct	distances	
from	𝑠 ↝ 𝑣_ ↝ 𝑡,	where	𝑡 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣_).

Invariant: After	we	explore	the	𝑖*m node,	
dist[𝑢]	is	set	correctly	for	all	𝑢 visited	so	far

SSSP-Dijkstra 𝑠 :
dist[𝑢]← ∞ for	all	𝑢 ∈ 𝑉
pred[𝑢]← 𝑛𝑢𝑙𝑙 for all 𝑢 ∈ 𝑉
dist[𝑠]← 0
Q ← (𝑠, 0)
While Q is not empty:
𝑢 ← PullMinimum(Q)
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
If dist[𝑣] > dist[𝑢] + 1:
dist[𝑣] = dist[𝑢] + 1
pred[𝑣] = [𝑢]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Else If dist[𝑣] = dist[𝑢] + 1:
Append 𝑢 to pred[𝑣]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Dijkstra:	Why	does	it	work?
𝑺

𝑠

𝑦

𝑣

𝑥

𝑷

𝑢

𝑷′

Invariant: After	we	explore	the	𝑖*m node,	dist[𝑢]	is	set	correctly	for	all	𝑢 visited	so	far

We	want	to	prove	that	𝑑_ 𝑣 = 𝑑_ 𝑢 + 𝑤/t is	the	shortest	path	from 𝑠 to	𝑣 if	𝑣 is	
the	next	node	in	the	priority	queue.	We	showed	this	works	for	𝑖 = 1 and	𝑖 = 2.	

Consider	the	picture	above,	which	represents	two	possibilities	for	paths	from	𝑠 to	
some	node	𝑣.	The	path	𝑃 represents	an	actual	shortest	path,	while	𝑃` represents	an	
alternative	path	assuming	some	node	𝑦 was	actually	a	better	next	choice	than	𝑣,	
meaning	that	ℓ	 𝑃` < ℓ(𝑃).	We	have:

ℓ 𝑃` = 𝑑_ x + w}~ + w~�
≥ 𝑑_ 𝑥 + 𝑤��

≥ 𝑑_ 𝑦
≥ 𝑑_ 𝑣
= ℓ(𝑃)

Dijkstra:	Why	does	it	work?

Invariant: After	we	explore	the	𝑖*m node,	dist[𝑢]	is	set	correctly	for	all	𝑢 visited	so	far

We	want	to	prove	that	𝑑_ 𝑣 = 𝑑_ 𝑢 + 𝑤/t is	the	shortest	path	from 𝑠 to	𝑣 if	𝑣 is	
the	next	node	in	the	priority	queue.	We	showed	this	works	for	𝑖 = 1 and	𝑖 = 2.	

Consider	the	picture	above,	which	represents	two	possibilities	for	paths	from	𝑠 to	
some	node	𝑣.	The	path	𝑃 represents	an	actual	shortest	path,	while	𝑃` represents	an	
alternative	path	assuming	some	node	𝑦 was	actually	a	better	next	choice	than	𝑣,	
meaning	that	ℓ	 𝑃` < ℓ(𝑃).	We	have:

ℓ 𝑃` = 𝑑_ x + w}~ + w~�
≥ 𝑑_ 𝑥 + 𝑤��

≥ 𝑑_ 𝑦
≥ 𝑑_ 𝑣
= ℓ(𝑃)

𝑺
𝑠

𝑦

𝑣

𝑥

𝑷

𝑢

𝑷′

Since	𝑤�t ≥ 0
We	know	𝑥 is	explored	already
We	chose	𝑣 to	explore!

So	ℓ	 𝑃` ≥ ℓ(𝑃). Contradiction!

Dijkstra:	Why	does	it	work?

Invariant: After	we	explore	the	𝑖*m node,	dist[𝑢]	is	set	correctly	for	all	𝑢 visited	so	far

We	want	to	prove	that	𝑑_ 𝑣 = 𝑑_ 𝑢 + 𝑤/t is	the	shortest	path	from 𝑠 to	𝑣 if	𝑣 is	
the	next	node	in	the	priority	queue.	We	showed	this	works	for	𝑖 = 1 and	𝑖 = 2.	

Consider	the	picture	above,	which	represents	two	possibilities	for	paths	from	𝑠 to	
some	node	𝑣.	The	path	𝑃 represents	an	actual	shortest	path,	while	𝑃` represents	an	
alternative	path	assuming	some	node	𝑦 was	actually	a	better	next	choice	than	𝑣,	
meaning	that	ℓ	 𝑃` < ℓ(𝑃).	We	have:

ℓ 𝑃` = 𝑑_ x + w}~ + w~�
≥ 𝑑_ 𝑥 + 𝑤��

≥ 𝑑_ 𝑦
≥ 𝑑_ 𝑣
= ℓ(𝑃)

𝑺
𝑠

𝑦

𝑣

𝑥

𝑷

𝑢

𝑷′

Since	𝑤�t ≥ 0
We	know	𝑥 is	explored	already
We	chose	𝑣 to	explore!

So	ℓ	 𝑃` ≥ ℓ(𝑃). Contradiction!

Dijkstra:	Why	does	it	work?

Invariant: After	we	explore	the	𝑖*m node,	dist[𝑢]	is	set	correctly	for	all	𝑢 visited	so	far

We	want	to	prove	that	𝑑_ 𝑣 = 𝑑_ 𝑢 + 𝑤/t is	the	shortest	path	from 𝑠 to	𝑣 if	𝑣 is	
the	next	node	in	the	priority	queue.	We	showed	this	works	for	𝑖 = 1 and	𝑖 = 2.	

Consider	the	picture	above,	which	represents	two	possibilities	for	paths	from	𝑠 to	
some	node	𝑣.	The	path	𝑃 represents	an	actual	shortest	path,	while	𝑃` represents	an	
alternative	path	assuming	some	node	𝑦 was	actually	a	better	next	choice	than	𝑣,	
meaning	that	ℓ	 𝑃` < ℓ(𝑃).	We	have:

ℓ 𝑃` = 𝑑_ x + w}~ + w~�
≥ 𝑑_ 𝑥 + 𝑤��

≥ 𝑑_ 𝑦
≥ 𝑑_ 𝑣
= ℓ(𝑃)

𝑺
𝑠

𝑦

𝑣

𝑥

𝑷

𝑢

𝑷′

Since	𝑤�t ≥ 0
We	know	𝑥 is	explored	already
We	chose	𝑣 to	explore!

So	ℓ	 𝑃` ≥ ℓ(𝑃). Contradiction!

Dijkstra:	Why	does	it	work?

Invariant: After	we	explore	the	𝑖*m node,	dist[𝑢]	is	set	correctly	for	all	𝑢 visited	so	far

We	want	to	prove	that	𝑑_ 𝑣 = 𝑑_ 𝑢 + 𝑤/t is	the	shortest	path	from 𝑠 to	𝑣 if	𝑣 is	
the	next	node	in	the	priority	queue.	We	showed	this	works	for	𝑖 = 1 and	𝑖 = 2.	

Consider	the	picture	above,	which	represents	two	possibilities	for	paths	from	𝑠 to	
some	node	𝑣.	The	path	𝑃 represents	an	actual	shortest	path,	while	𝑃` represents	an	
alternative	path	assuming	some	node	𝑦 was	actually	a	better	next	choice	than	𝑣,	
meaning	that	ℓ	 𝑃` < ℓ(𝑃).	We	have:

ℓ 𝑃` = 𝑑_ x + w}~ + w~�
≥ 𝑑_ 𝑥 + 𝑤��

≥ 𝑑_ 𝑦
≥ 𝑑_ 𝑣
= ℓ(𝑃)

𝑺
𝑠

𝑦

𝑣

𝑥

𝑷

𝑢

𝑷′

Since	𝑤�t ≥ 0
We	know	𝑥 is	explored	already
We	chose	𝑣 to	explore!

So	ℓ	 𝑃` ≥ ℓ(𝑃). Contradiction!

Dijkstra:	Why	does	it	work?

Invariant: After	we	explore	the	𝑖*m node,	dist[𝑢]	is	set	correctly	for	all	𝑢 visited	so	far

We	want	to	prove	that	𝑑_ 𝑣 = 𝑑_ 𝑢 + 𝑤/t is	the	shortest	path	from 𝑠 to	𝑣 if	𝑣 is	
the	next	node	in	the	priority	queue.	We	showed	this	works	for	𝑖 = 1 and	𝑖 = 2.	

Consider	the	picture	above,	which	represents	two	possibilities	for	paths	from	𝑠 to	
some	node	𝑣.	The	path	𝑃 represents	an	actual	shortest	path,	while	𝑃` represents	an	
alternative	path	assuming	some	node	𝑦 was	actually	a	better	next	choice	than	𝑣,	
meaning	that	ℓ	 𝑃` < ℓ(𝑃).	We	have:

ℓ 𝑃` = 𝑑_ x + w}~ + w~�
≥ 𝑑_ 𝑥 + 𝑤��

≥ 𝑑_ 𝑦
≥ 𝑑_ 𝑣
= ℓ(𝑃)

𝑺
𝑠

𝑦

𝑣

𝑥

𝑷

𝑢

𝑷′

Since	𝑤�t ≥ 0
We	know	𝑥 is	explored	already

We	chose	𝑣 to	explore,	not	𝑦!
So	ℓ	 𝑃` ≥ ℓ(𝑃). Contradiction!

Dijkstra:	Why	does	it	work?

Invariant: After	we	explore	the	𝑖*m node,	dist[𝑢]	is	set	correctly	for	all	𝑢 visited	so	far

We	want	to	prove	that	𝑑_ 𝑣 = 𝑑_ 𝑢 + 𝑤/t is	the	shortest	path	from 𝑠 to	𝑣 if	𝑣 is	
the	next	node	in	the	priority	queue.	We	showed	this	works	for	𝑖 = 1 and	𝑖 = 2.	

Consider	the	picture	above,	which	represents	two	possibilities	for	paths	from	𝑠 to	
some	node	𝑣.	The	path	𝑃 represents	an	actual	shortest	path,	while	𝑃` represents	an	
alternative	path	assuming	some	node	𝑦 was	actually	a	better	next	choice	than	𝑣,	
meaning	that	ℓ	 𝑃` < ℓ(𝑃).	We	have:

ℓ 𝑃` = 𝑑_ x + w}~ + w~�
≥ 𝑑_ 𝑥 + 𝑤��

≥ 𝑑_ 𝑦
≥ 𝑑_ 𝑣
= ℓ(𝑃)

𝑺
𝑠

𝑦

𝑣

𝑥

𝑷

𝑢

𝑷′

Since	𝑤�t ≥ 0
We	know	𝑥 is	explored	already

We	chose	𝑣 to	explore,	not	𝑦!
So	ℓ	 𝑃` ≥ ℓ(𝑃). Contradiction!

Dijkstra	running	time
SSSP-Dijkstra 𝑠 :
dist[𝑢]← ∞ for	all	𝑢 ∈ 𝑉
pred[𝑢]← 𝑛𝑢𝑙𝑙 for all 𝑢 ∈ 𝑉
dist[𝑠]← 0
Q ← (𝑠, 0)
While Q is not empty:
𝑢 ← PullMinimum(Q)
For 𝑣 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢):
If dist[𝑣] > dist[𝑢] + 1:
dist[𝑣] = dist[𝑢] + 1
pred[𝑣] = [𝑢]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Else If dist[𝑣] = dist[𝑢] + 1:
Append 𝑢 to pred[𝑣]
PushOrReplace(𝑄, 𝑣,dist[𝑣])

Assuming	our	priority	queue	
supports	insertion,	update,	
and	extraction	in	𝑂(𝑙𝑜𝑔	𝐸)
time,	this	approach	runs	in	

𝑂(𝑛 + log𝐸)

Floyd-Warshall

What	about	applications	where	negative	edgeweights make	sense?	
• Transactions
• Chemical	reactions
• Changes	over	time

The	Floyd-Warshall algorithm	is	a	dynamic	programming	solution	to	solving	
the	all-pairs-shortest-paths	problem	on	weighted,	directed	graphs	that	have	
no	negative	cycles.

Homework	4:	Read/watch	about	Floyd-Warshall and	translate	recursive	
definition	and	pseudocode	into	LaTeX!

• Will	be	concurrent	with	Homework	3	but	due	Tuesday	at	Midnight
• Released	shortly	after	class
• Very	easy!	Just	translating	something	you	are	given	into	LaTex

Floyd-Warshall

What	about	applications	where	negative	edgeweights make	sense?	
• Transactions
• Chemical	reactions
• Changes	over	time

The	Floyd-Warshall algorithm	is	a	dynamic	programming	solution	to	solving	
the	all-pairs-shortest-paths	problem	on	weighted,	directed	graphs	that	have	
no	negative	cycles.

(sub)homework	4:	Read/watch	about	Floyd-Warshall and	translate	recursive	
definition	and	pseudocode	into	LaTeX!

• Will	be	concurrent	with	Homework	3	but	due	Tuesday	at	Midnight
• Released	shortly	after	class
• Very	easy	LaTeX practice!	Just	translate	something	you	are	given	into	LaTex.

Next	Time

Spanning	trees	and	flow	algorithms

Suggested	Reading:	Erickson	Chapter	7	and	Chapter	10	through	10.3

Keep	working	on	homeworks,	ask	questions	on	Piazza,	and	have	a	great	
weekend!

