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Business

Still working on midterm grading — should be done soon!

Homework 3 is out, due Monday at midnight Boston time



Last time: Betweenness Centrality

Betweenness centrality is used as a proxy for the importance of a node in facilitating
connections between other nodes.

For node u, betweenness is measured as the ratio of shortest paths between all other pairs
of nodes (s, t) that u lies on. Formally:

B(w) = z o5t (U)
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Where ay; is the number of shortest paths between nodes s and t and g, (u) is the
number of those shortest paths that include u.
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Last time: How do we compute shortest paths?

To compute betweenness centrality, we need to compute shortest
paths for all pairs of nodes.

Rather than jumping straight there, let’s first solve a simpler problem:
finding the length of the shortest path from a single node s to all other
nodes in the graph (called the single source shortest path problem)

We can use BFS!



Last time: Single Source Shortest Paths with BFS

dist[v] stores the current estimate of
the distance between our source node
s and the node v, initialized to infinity

We walk along every edge of the graph
and check whether the distance
currently stored for v could be made
shorter by routing through u

If yes, we update the distance, and
store u as the predecessor (similar to
parent) of v in the shortest path

Once BFS is done, we have the shortest
path length from s to every node v
storedindist[v] and we can
recover a shortest path for any node
by following pred back to s
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SSSP-BFS(s):
dist[u]« o forallu e V
pred[u]< null for all uevV
dist[s]< 0
Q &5
While Q is not empty:
u <« Pull(Q)
For v € Neighbors(u):

If dist[v] > dist[u] + 1:
dist[v] = dist[u] + 1
pred[v] = u
Push(Q,v)

()




Last time: Single Source Shortest Paths with BFS

dist[v] stores the current estimate of
the distance between our source node
s and the node v, initialized to infinity

We walk along every edge of the graph
and check whether the distance
currently stored for v could be made
shorter by routing through u

If yes, we update the distance, and
store u as the predecessor (similar to
parent) of v in the shortest path

Once BFS is done, we have the shortest
path length from s to every node v
storedindist[v] and we can
recover a shortest path for any node
by following pred back to s

SSSP-BFS(s):
dist[u]« o forallu e V
pred[u]< null for all uevV
dist[s]< 0
Q &5
While Q is not empty:
u <« Pull(Q)
For v € Neighbors(u):
If dist[v] > dist[u] + 1:
dist[v] = dist[u] + 1

pred[v] = u
Push(Q,v)
When we compute @ m c
betweenness

centrality, we will
need all of the

paths! How? ° °



Recovering all paths from SSSP-BFS

A simple modification
allows us to store all of the
possible shortest paths.

We just need to adjust our
pred[u] data structure to
store a list of predecessors,
rather than just one!

SSSP-BFS(s):

dist[u]« o forallu e V
pred[u]< null for all uevV
dist[s]< 0
Q &5
While Q is not empty:

u <« Pull(Q)

For v € Neighbors(u):

If dist[v] > dist[u] + 1:

dist[v] = dist[u] + 1
pred[v] = u
Push(Q,v)



Recovering all paths from SSSP-BFS

SSSP-BFS(s):

A simple modification dist[u]e o forallu € V

allows us to store all of the pred[uJenull for all ueV
. dist[s]< 0

possible shortest paths. 0 s

While Q is not empty:
u < Pull(Q)

We just need to adjust our Pﬂk@/ji@j For v € Neighbors(u):
pred[u] data structure to ALY If dist[v] > dist[u] + 1:

store a list of predecessors, sy g;:cti{z} - ?Iijt[”] 1
rather than just one! Push(Q,v)

Else If dist[v] = dist[u] + 1:
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All Pairs Shortest Paths with BFS

We have an algorithm for

computing shortest paths APSP-BFS(G = (V, E)):
from a single source For v € V:
node to every other node SSSP-BFS (V)

We need the shortest
paths for all pairs of
nodes (the all pairs
shortest paths problem)
Running time
One option: Just run

SSSP-BFS from every For each of n nodes, we run a full BFS. BFS runs in
node! O (n + m) time. Therefore we have O(n(n + m)), or

0(n? + nm).



All Pairs Shortest Paths with BFS

We have an algorithm for
computing shortest paths
from a single source

node to every other node

We need the shortest
paths for all pairs of
nodes (the all pairs
shortest paths problem)

One option: Just run
SSSP-BFS from every
node!

APSP-BFS-Paths(G = (V,E)):
For s€eV:
SSSP-BFS(s) // fills pred[u] V,
For tE€V:
If s#¥t and s>t:
paths[s,t] <« RecoverPaths(s,t)

Running time
For each of n nodes, we run a full BFS. BFS runs in
O (n + m) time. Therefore we have O(n(n + m)), or
0(n? + nm).

RecoverPaths is 0(n), meaning the doubly nested
loop is 0(n?), regardless of SSSP-BFS.



Betweenness Centrality

Now we can compute
betweenness centrality:

Betweenness(G):
paths « APSP-BFS-Paths (G )
Ot (u) For u€V:
B(U)Z z —_— For s€eV:
Ogt For t€eV:
SFLFU if s+t
) denominator « |paths([s,t]|
Where Ogt IS the number of numerator < |paths[s,t] that contain u
shortest paths between nodes b[u] += d””m’ﬂ
enominator
s and t and oy (u) is the
number of those shortest NI [

paths that include u.
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Betweenness Centrality

Now we can compute
betweenness centrality:

Betweenness(G):
paths « APSP-BFS-Paths (G )
Ot (u) For u€V:
B(U)Z z For s€eV:
Ost For teV:
Shalals if s#t:
) denominator « |paths([s,t]|
Where Ogt IS the number of numerator < |paths[s,t] that contain u
shortest paths between nodes blu] += —merator
. denominator
s and t and oy (u) is the
number of those shortest S
paths that include u. Question: Does all of this work on directed graphs?

Yes! With some modification to APSP-BFS-Paths to account for
when a path does not exist (dist[s,t]=00)



What about weighted graphs?

Al ) éﬂ%

So far, we have only considered unweighted graphs, or equivalently gré

with uniform weights.
ALUJ :i

We may want to find shortest paths in a weighted graph G = (V,E, W)
where W is a set of weights corresponding to the edges, e.g. W = (u, v, w)
where w is a nonnegative integer for all (u,v) € E.
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Generalizing SSSP-BFS: Best First Search

We can modify our BFS based algorithm to
take edge weight into account

The distance corresponding to a path between
two nodes is now the sum of the edge weights
along the path

Modification requires taking a “global” view of
the graph — the next step in any traversal
algorithm involves choosing an edge to follow,
we will choose it in a smarter way.

Dijkstra’s Algorithm: choose the minimum
distance edge to try to update next using a
priority queue

Dijkstra’s algorithm is an example of a “best
first search” approach to graph traversal: we
have some criteria (known as a heuristic) for
choosing a good next node, so we use it.

SSSP-Dijkstra(s):
dist[u]e o forallu e V
pred[u]l« null for all ueV
dist[s]< 0
Q «(s,0)
While Q is not empty:
U < PullMinimum(Q)
For v € Neighbors(u):

If dist[v] > dist[u] + 1:
dist[v] = dist[u] + 1
pred[v] = [u]
PushOrReplace(Q,v,dist[v])

Else If dist[v] = dist[u] + 1:
Append u to pred[vV]
PushOrReplace(Q,v,dist[v])



Dijkstra’s Algorithm: Demo

Example from Jon Ullman



Dijkstra’s Algorithm: Demo
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Dijkstra’s Algorithm: Demo
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Dijkstra’s Algorithm: Demo

Explore E

do(u)
dy(u)
d(u)
ds(u)
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Dijkstra’s Algorithm: Demo

Explore B
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Dijkstra’s Algorithm: Demo
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Dijkstra’s Algorithm: Demo

Maintain parent

pointers so we
can find the
shortest paths

do(u)
dy(u)
d(u)
ds(u)
dy(u)
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Dijkstra: Why does it work?

At the beginning, we have only that the SSSP-Dijkstra(s):
distance from s to itself is 0, which is true by dist[u]« oo forallu € V
assumption. pred[u]< null for all u€evV
dist[s]< 0
Q < (s,0)

While Q is not empty:
U < PullMinimum(Q)
For v € Neighbors(u):

If dist[v] > dist[u] + 1:
dist[v] = dist[u] + 1
pred[v] = [u]
PushOrReplace(Q,v,dist[v])

Else If dist[v] = dist[u] + 1:
Append u to pred[vV]
PushOrReplace(Q,v,dist[v])
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At the beginning, we have only that the SSSP-Dijkstra(s):

distance from s to itself is 0, which is true by dist[u]« oo forallu € V

assumption. pred[u]< null for all u€evV
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First, we explore the neighborhood of s and Q « (5,0)

set all distances to its neighbors correctly. While Q is not empty:

U < PullMinimum(Q)
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Dijkstra: Why does it work?

At the beginning, we have only that the
distance from s to itself is 0, which is true by
assumption.

First, we explore the neighborhood of s and
set all distances to its neighbors correctly.

Then we choose another node, call it v4, and
correctly set all of the distances from s —
v; = t, where t € Neighbors(v,).
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assumption.
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Dijkstra: Why does it work?

At the beginning, we have only that the
distance from s to itself is 0, which is true by
assumption.

First, we explore the neighborhood of s and
set all distances to its neighbors correctly.

Then we choose another node, call it v4, and
correctly set all of the distances from s —
v; = t, where t € Neighbors(v,).

At the it"node, we set the correct distances

from s ~ v; ~ t, wheret € Neighbors(v;).

Invariant: After we explore the it node,
dist[u] is set correctly for all u visited so far

SSSP-Dijkstra(s):
dist[u]e o forallu e V
pred[u]l« null for all ueV
dist[s]< 0
Q «(s,0)
While Q is not empty:
U < PullMinimum(Q)
For v € Neighbors(u):

If dist[v] > dist[u] + 1:
dist[v] = dist[u] + 1
pred[v] = [u]
PushOrReplace(Q,v,dist[v])

Else If dist[v] = dist[u] + 1:
Append u to pred[vV]
PushOrReplace(Q,v,dist[v])



Dijkstra: Why does it work? G

Invariant: After we explore the i" node, dist[u] is set correctly for all u visited so far

We want to prove that d;(v) = d;(u) + w,,, is the shortest path from sto v if v is
the next node in the priority queue. We showed this works fori = 1 and i = 2.



Dijkstra: Why does it work? G ,

Invariant: After we explore the i" node, dist[u] is set correctly for all u visited so far

We want to prove that d;(v) = d;(u) + w,,, is the shortest path from sto v if v is
the next node in the priority queue. We showed this works fori = 1 and i = 2.
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some node v. The path P represents an actual shortest path, while P" represents an
alternative path assuming some node y was actually a better next choice than v,
meaning that £ (P*) < £(P). We have:
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> d;(x) + wyy Since wy,, = 0
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Dijkstra: Why does it work? G ,

Invariant: After we explore the i" node, dist[u] is set correctly for all u visited so far

We want to prove that d;(v) = d;(u) + w,,, is the shortest path from sto v if v is
the next node in the priority queue. We showed this works fori = 1 and i = 2.

Consider the picture above, which represents two possibilities for paths from s to
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meaning that £ (P*) < £(P). We have:

(P) = d;i(x) + Wiy + Wyy
= di(x) + Wxy Since wy,, =2 0
> di (y) We know x is explored already
= di(v) We chose v to explore, not y!



Dijkstra: Why does it work? G

Invariant: After we explore the i" node, dist[u] is set correctly for all u visited so far

We want to prove that d;(v) = d;(u) + w,,, is the shortest path from sto v if v is
the next node in the priority queue. We showed this works fori = 1 and i = 2.

Consider the picture above, which represents two possibilities for paths from s to
some node v. The path P represents an actual shortest path, while P" represents an
alternative path assuming some node y was actually a better next choice than v,
meaning that £ (P*) < £(P). We have:

(P) = d;i(x) + Wiy + Wyy
> d;(x) + wyy Since wy,, = 0
( > di (y) We know x is explored already
/@ (ﬁ) 2/Q (@ >d;(v) We chose v to explore, not y!
q = ¢(P) So ¢ (P*) = £(P). Contradiction!
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Dijkstra running time

SSSP-Dijkstra(s):
dist[u]e o forallu e V
pred[u]l« null for all ueV

. .. dist[s]< 0
Assuming our priority queue 0 < (s,0)
supports insertion, update, While Q is not empty:
and extraction in O(log E) u & Frllibto | ©)

. . . For v € Neighbors(u):
time, this approach runs in If dist[gu] > Eii)st[u] + 1:
0(n+logE) dist[v] = dist[u] + 1
pred[v] = [u]
PushOrReplace(Q,v,dist[v])
Else If dist[v] = dist[u] + 1:
Append u to pred[vV]

<
0 (ﬂ+/ED PushOrReplace(Q,v,dist[v])
QNSRS



Floyd-Warshall

What about applications where negative edgeweights make sense?

* Transactions
* Chemical reactions
* Changes over time

The Floyd-Warshall algorithm is a dynamic programming solution to solving
the all-pairs-shortest-paths problem on weighted, directed graphs that have

no negative cycles.
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Floyd-Warshall

What about applications where negative edgeweights make sense?
* Transactions
* Chemical reactions
* Changes over time

The Floyd-Warshall algorithm is a dynamic programming solution to solving
the all-pairs-shortest-paths problem on weighted, directed graphs that have
no negative cycles.

(sub)homework 4: Read/watch about Floyd-Warshall and translate recursive
definition and pseudocode into LaTeX!
* Will be concurrent with Homework 3 but due Tuesday at Midnight

* Released shortly after class
* Very easy LaTeX practice! Just translate something you are given into LaTex.



Next Time

Spanning trees and flow algorithms
Suggested Reading: Erickson Chapter 7 and Chapter 10 through 10.3

Keep working on homeworks, ask questions on Piazza, and have a great
weekend!



