
Lecture	16:	Floyd-Fulkerson
Tim	LaRock

larock.t@northeastern.edu
bit.ly/cs3000syllabus

Business

Homework	5	released	this	morning,	due	next	Tuesday	the	9th at	
11:59PM	Boston	time

Midterm	2	next	Wednesday	night	through	Friday	night

Question	on	grades

• For	any	s-t	flow	𝑓 and	any	s-t	cut	(𝐴, 𝐵) 𝑣𝑎𝑙 𝑓 ≤ 𝑐𝑎𝑝 𝐴, 𝐵

• If	𝑓 is	a	flow,	(𝐴, 𝐵) is	a	cut,	and	𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵),	then	
𝑓 is	a	max	flow	and	(𝐴, 𝐵) is	a	min	cut

≤ . 𝑓(𝑒)
�

1	3456	7→9

≤ . 𝑐 𝑒
�

1	3456	7→9

= 𝑐𝑎𝑝(𝐴, 𝐵)

𝑣𝑎𝑙 𝑓 	= 	 . 𝑓(𝑒)
�

1	3456	7→9

		−	 . 𝑓(𝑒)
�

1	3456	9→7

(by	non-negativity)

(definition	of	capacity)

Last	time:	Weak	MaxFlow-MinCut	Duality

Augmenting	Paths
• Given	a	network	𝐺	 = 	 (𝑉, 𝐸, 𝑠, 𝑡, 𝑐 𝑒) and	a	flow	𝑓,	an	
augmenting	path	𝑃 is	an	𝑠 → 𝑡 path	such	that	𝑓(𝑒) < 𝑐(𝑒)
for	every	edge	𝑒 ∈ 𝑃

s

1

2

t

10

10

10 10

0 0

0

20

20

30

Augmenting	Paths
• Given	a	network	𝐺	 = 	 (𝑉, 𝐸, 𝑠, 𝑡, 𝑐 𝑒) and	a	flow	𝑓,	an	
augmenting	path	𝑃 is	an	𝑠 → 𝑡 path	such	that	𝑓(𝑒) < 𝑐(𝑒)
for	every	edge	𝑒 ∈ 𝑃

s

1

2

t

10

10

10 10

10 10

0

20

20

30

Adding	uniform	flow	
on	an	augmenting	
path	results	in	a	new	
valid	s-t	flow!

Greedy	Max	Flow
• Start	with	𝑓 𝑒 = 0 for	all	edges	𝑒 ∈ 𝐸
• Find	an	augmenting	path 𝑃
• Repeat	until	you	get	stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Does	Greedy	Work?
• Greedy	gets	stuck	before	finding	a	max	flow
• How	can	we	get	from	our	solution	to	the	max	flow?

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

10

10

20 10

10 20

10

20

20

30

greedy optimal

Residual	Graphs
• Original	edge:		𝑒	 = 𝑢, 𝑣 ∈ 	𝐸.

• Flow 𝑓(𝑒),	capacity	𝑐(𝑒)

• Residual	edge
• Allows	“undoing”	flow
• 𝑒 = 𝑢, 𝑣 and 𝑒E = 𝑣, 𝑢 .
• Residual	capacity

• Residual	graph 𝐺3 = 𝑉, 𝐸3
• Edges	with	positive	residual	capacity.
• 𝐸𝑓	 = 	 𝑒 ∶ 	𝑓 𝑒 < 	𝑐 𝑒 	∪ 	 𝑒𝑅 ∶ 	𝑐 𝑒 > 	0 .

u v𝑓(𝑒)
𝑐(𝑒)

u v

𝑐 𝑒 − 𝑓(𝑒)

𝑓(𝑒) 𝑒E

𝑒

Augmenting	Paths	in	Residual	Graphs
• Let	𝐺3 be	a	residual	graph
• Let	𝑃 be	an	augmenting	path	in	the	residual	graph
• Fact: 𝑓’	 = 	Augment(𝐺3, 𝑃) is	a	valid	flow

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

Augmenting	Paths	in	Residual	Graphs
• Let	𝐺3 be	a	residual	graph
• Let	𝑃 be	an	augmenting	path	in	the	residual	graph
• Fact: 𝑓’	 = 	Augment(𝐺3, 𝑃) is	a	valid	flow

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

Note:	This	is	the	same	process	as	
the	recurrence	in	Erickson	10.3!

Ford-Fulkerson	Algorithm

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

FordFulkerson(G,s,t,{c(e)})
for e Î E: f(e) ¬ 0
Gf is the residual graph

while (there is an s-t path P in Gf)
f ¬ Augment(Gf,P)
update Gf

return f

Ford-Fulkerson	Algorithm
• Start	with	𝑓 𝑒 = 0 for	all	edges	𝑒 ∈ 𝐸
• Find	an	augmenting	path 𝑃 in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30 s

1

2

t

Ford-Fulkerson	Algorithm
• Start	with	𝑓 𝑒 = 0 for	all	edges	𝑒 ∈ 𝐸
• Find	an	augmenting	path 𝑃 in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30 s

1

2

t

10

10

20

20

30

𝑒 ∈ 𝐸
𝑒E ∉ 𝐸

Ford-Fulkerson	Algorithm
• Start	with	𝑓 𝑒 = 0 for	all	edges	𝑒 ∈ 𝐸
• Find	an	augmenting	path 𝑃 in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30 s

1

2

t

10

10

20

20

30

𝑒 ∈ 𝐸
𝑒E ∉ 𝐸

Ford-Fulkerson	Algorithm
• Start	with	𝑓 𝑒 = 0 for	all	edges	𝑒 ∈ 𝐸
• Find	an	augmenting	path 𝑃 in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

20

20

30s

1

2

t

10

10

20 0

0 20

20

20

20

30

𝑒 ∈ 𝐸
𝑒E ∉ 𝐸

Ford-Fulkerson	Algorithm
• Start	with	𝑓 𝑒 = 0 for	all	edges	𝑒 ∈ 𝐸
• Find	an	augmenting	path 𝑃 in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

10

10

20

𝑒 ∈ 𝐸
𝑒E ∉ 𝐸

10

20

20

Ford-Fulkerson	Algorithm
• Start	with	𝑓 𝑒 = 0 for	all	edges	𝑒 ∈ 𝐸
• Find	an	augmenting	path 𝑃 in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

10

10

20

𝑒 ∈ 𝐸
𝑒E ∉ 𝐸

10

20

20

Ford-Fulkerson	Algorithm
• Start	with	𝑓 𝑒 = 0 for	all	edges	𝑒 ∈ 𝐸
• Find	an	augmenting	path 𝑃 in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

20 10

10 20

10

20

20

30 s

1

2

t

10

10

20

𝑒 ∈ 𝐸
𝑒E ∉ 𝐸

10

20

20

Ford-Fulkerson	Algorithm
• Start	with	𝑓 𝑒 = 0 for	all	edges	𝑒 ∈ 𝐸
• Find	an	augmenting	path 𝑃 in	the	residual	graph
• Repeat	until	you	get	stuck

s t

10

10

s

1

2

t

10

10

20 10

10 20

10

20

20

30

1

2

10

20

20

20

Running	Time	of	Ford-Fulkerson
• For	integer	capacities,	≤ 𝑣𝑎𝑙 𝑓∗ augmentation	steps

• Can	perform	each	augmentation	step	in	𝑂 𝑚 time
• find	augmenting	path	in	𝑂 𝑚
• augment	the	flow	along	path	in	𝑂 𝑛
• update	the	residual	graph	along	the	path	in	𝑂 𝑛

• For	integer	capacities,	FF	runs	in	𝑂 𝑚 ⋅ 𝑣𝑎𝑙 𝑓∗ time
• 𝑂 𝑚𝑛 time	if	all	capacities	are	𝑐1 = 1
• 𝑂 𝑚𝑛𝐶[\] time	for	any	integer	capacities	≤ 𝐶[\]

• We	can	speed	FF	up	by	choosing	smarter	augmenting	paths
• Fattest	path:	Choose	the	augmenting	path	with	max	capacity

• Use	modified	BFS/MST	or	similar	to	find	max	capacity	path
• ≤ 𝑚 ln 𝑣∗ augmenting	paths	
• 𝑂(𝑚_ ln 𝑛 ln 𝑣∗) total	running	time

• Shortest	augmenting	paths	(“shortest	augmenting	path”)
• 𝑂(𝑚_𝑛) time

Correctness	of	Ford-Fulkerson
• Theorem: 𝑓 is	a	maximum	s-t	flow	if	and	only	if	there	is	no	
augmenting	s-t	path	in	𝐺3

• Strong	MaxFlow-MinCut Duality:	The	value	of	the	max	s-t	
flow	equals	the	capacity	of	the	min	s-t	cut	

• We’ll	prove	that	the	following	are	equivalent	for	all	𝑓
1. There	exists	a	cut	(𝐴, 𝐵) such	that	𝑣𝑎𝑙 𝑓 = 𝑐𝑎𝑝(𝐴, 𝐵)
2. Flow	𝑓 is	a	maximum	flow
3. There	is	no	augmenting	path	in	𝐺3

Optimality	of	Ford-Fulkerson
• Theorem:	the	following	are	equivalent	for	all	𝑓

1. There	exists	a	cut	(𝐴, 𝐵) such	that	𝑣𝑎𝑙 𝑓 = 𝑐𝑎𝑝(𝐴, 𝐵)
2. Flow	𝑓 is	a	maximum	flow
3. There	is	no	augmenting	path	in	𝐺3

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	𝐺3,	then	there	is	a	
cut	(𝐴, 𝐵) such	that	𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	𝐺3,	then	there	is	a	
cut	(𝐴, 𝐵) such	that	𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)

• Sanity	check:	Is	there	such	a	cut	in	our	example?

s t

10

10

s

1

2

t

10

10

20 10

10 20

10

20

20

30

1

2

10

20

20

20

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	𝐺3,	then	there	is	a	
cut	(𝐴, 𝐵) such	that	𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let	𝐴 be	the	set	of	nodes	reachable	from	𝑠 in	𝐺3
• Let	𝐵 be	all	other	nodes
• Key	observation:	no	edges	in	𝐺3 go	from	𝐴 to	𝐵

s t

10

10

s

1

2

t

10

10

20 10

10 20

10

20

20

30

1

2

10

20

20

20

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	𝐺3,	then	there	is	a	
cut	(𝐴, 𝐵) such	that	𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let	𝐴 be	the	set	of	nodes	reachable	from	𝑠 in	𝐺3
• Let	𝐵 be	all	other	nodes
• Key	observation:	no	edges	in	𝐺3 go	from	𝐴 to	𝐵

• If	𝑒 is	𝐴 → 𝐵,	then	𝑓 𝑒 = 𝑐 𝑒
• If	𝑒 is	𝐵 → 𝐴,	then	𝑓 𝑒 = 0

original network

s

t

A B

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	𝐺3,	then	there	is	a	
cut	(𝐴, 𝐵) such	that	𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let	𝐴 be	the	set	of	nodes	reachable	from	𝑠 in	𝐺3
• Let	𝐵 be	all	other	nodes
• Key	observation:	no	edges	in	𝐺3 go	from	𝐴 to	𝐵

• If	𝑒 is	𝐴 → 𝐵,	then	𝑓 𝑒 = 𝑐 𝑒
• If	𝑒 is	𝐵 → 𝐴,	then	𝑓 𝑒 = 0

original network

s

t

A B

𝑣𝑎𝑙 𝑓 = . 𝑓 𝑒 −	 . 𝑓(𝑒)
�

1:9→7

�

1:7→9

= . 𝑓 𝑒
�

1:7→9

= . 𝑐 𝑒
�

1:7→9

= 𝑐𝑎𝑝(𝐴, 𝐵)

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	𝐺3,	then	there	is	a	
cut	(𝐴, 𝐵) such	that	𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let	𝐴 be	the	set	of	nodes	reachable	from	𝑠 in	𝐺3
• Let	𝐵 be	all	other	nodes
• Key	observation:	no	edges	in	𝐺3 go	from	𝐴 to	𝐵

• If	𝑒 is	𝐴 → 𝐵,	then	𝑓 𝑒 = 𝑐 𝑒
• If	𝑒 is	𝐵 → 𝐴,	then	𝑓 𝑒 = 0

original network

s

t

A B

𝑣𝑎𝑙 𝑓 = . 𝑓 𝑒 −	 . 𝑓(𝑒)
�

1:9→7

�

1:7→9

= . 𝑓 𝑒
�

1:7→9

= . 𝑐 𝑒
�

1:7→9

= 𝑐𝑎𝑝(𝐴, 𝐵)

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	𝐺3,	then	there	is	a	
cut	(𝐴, 𝐵) such	that	𝑣𝑎𝑙(𝑓) = 𝑐𝑎𝑝(𝐴, 𝐵)
• Let	𝐴 be	the	set	of	nodes	reachable	from	𝑠 in	𝐺3
• Let	𝐵 be	all	other	nodes
• Key	observation:	no	edges	in	𝐺3 go	from	𝐴 to	𝐵

• If	𝑒 is	𝐴 → 𝐵,	then	𝑓 𝑒 = 𝑐 𝑒
• If	𝑒 is	𝐵 → 𝐴,	then	𝑓 𝑒 = 0

original network

s

t

A B

= . 𝑐 𝑒
�

1:7→9

= 𝑐𝑎𝑝(𝐴, 𝐵)

No	augmenting	path	in	𝐺3 implies	that	we	have	a	maximum	cut!= . 𝑓 𝑒
�

1:7→9

𝑣𝑎𝑙 𝑓 = . 𝑓 𝑒 −	 . 𝑓(𝑒)
�

1:9→7

�

1:7→9

Summary
• The	Ford-Fulkerson	Algorithm	solves	maximum	s-t	flow	

• Running	time	𝑂 𝑚 ⋅ 𝑣𝑎𝑙 𝑓∗ in	networks	with	integer	capacities

• Strong	MaxFlow-MinCut Duality:	max	flow	=	min	cut
• The	value	of	the	maximum	s-t	flow	equals	the	capacity	of	the	
minimum	s-t	cut	

• If	𝑓∗ is	a	maximum	s-t	flow,	then	the	set	of	nodes	reachable	from	s	
in	𝐺3∗ gives	a	minimum	cut

• Given	a	max-flow,	can	find	a	min-cut	in	time	𝑂 𝑛 +𝑚

• Every	graph	with	integer	capacities	has	an	integer	
maximum	flow
• Ford-Fulkerson	will	return	an	integer	maximum	flow

Applications	of	Network	Flow

Applications	of	Network	Flow

• Algorithms	for	maximum	flow	can	be	used	to	solve:
• Bipartite	Matching
• Disjoint	Paths
• Survey	Design
• Matrix	Rounding
• Auction	Design
• Fair	Division
• Project	Selection
• Baseball	Elimination
• Airline	Scheduling
• …

Applications	of	Network	Flow

• Algorithms	for	maximum	flow	can	be	used	to	solve:
• Bipartite	Matching
• Disjoint	Paths
• Survey	Design
• Matrix	Rounding
• Auction	Design
• Fair	Division
• Project	Selection
• Baseball	Elimination
• Airline	Scheduling
• …

In	general:	If	a	problem	can	
be	solved	in	polynomial	

time,	maximum	flow	can	be	
used	to	solve	it!

Reduction

• Definition:	a	reduction is	an	efficient	algorithm	
that	solves	problem	A using	calls	to	function							
that	solves	problem	B.

Mechanics	of	Reductions

• What	exactly	is	a	problem?
• A	set	of	legal	inputs	𝑿

• Ex:	An	array	of	numbers	𝐴[1. . 𝑛]

• A	set	𝑨(𝒙) of	legal	outputs	for	each	𝒙 ∈ 𝑿
• Ex:	The	array	𝐴 in	sorted	order

• Example:	integer	maximum	flow

• Input:	𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐1) where	𝑐1 is	an	integer	for	
every	𝑒 ∈ 𝐸

• Output:	A	maximum	flow	{𝑓 𝑒 } for	𝐺 where	𝑓(𝑒) is	an	
integer	for	every	𝑒 ∈ 𝐸 such	that	0 ≤ 𝑓 𝑒 ≤ 𝑐1

Mechanics	of	Reductions

• What	exactly	is	a	problem?
• A	set	of	legal	inputs	𝑿

• Ex:	An	array	of	numbers	𝐴[1. . 𝑛]

• A	set	𝑨(𝒙) of	legal	outputs	for	each	𝒙 ∈ 𝑿
• Ex:	The	array	𝐴 in	sorted	order

• Example:	integer	maximum	flow

• Input:	𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐1) where	𝑐1 is	an	integer	for	
every	𝑒 ∈ 𝐸

• Output:	A	maximum	flow	{𝑓 𝑒 } for	𝐺 where	𝑓(𝑒) is	an	
integer	for	every	𝑒 ∈ 𝐸 such	that	0 ≤ 𝑓 𝑒 ≤ 𝑐1

Mechanics	of	Reductions

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

In	the	simplest	case,	we	just	call	SolveA a	single	time.	In	fact	
we	may	use	SolveA as	a	subroutine	to	a	more	complex	

reduction.

When	is	a	Reduction	Correct?

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

Then	for	every	valid	input	𝑥,	if	𝑣 is	a	
valid	output	in	𝐴 𝑢 ,	then	𝑦 is	a	valid	
output	in	𝐵(𝑥).

Assume	that	for	valid	input	𝑢,	SolveA
returns	a	valid	output	𝑣 in	𝐴(𝑢).

What	is	the	Running	Time?

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

1 2

3

Running	time:							+							+					1 2 3

Example:	Minimum	Cut

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

A	=	MaxFlow
B	=	MinCut

Input	𝑥 for	B:	𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐1)

Input	𝑢 for	A:	𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐1)

Output	𝑣 ∈ 𝐴(𝑢):	𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐1)

Output	𝑦 ∈ 𝐵(𝑥):	𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐1)

1. Take	𝑓,	compute	the	residual	graph	𝐺3
2. Find	the	nodes	reachable	from	𝑠 in	𝐺3
3. Output	these	nodes

Example:	Median

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

Input	𝑥 for	B:	Array	of	length	𝑛,	𝐴 1. . 𝑛

Input	𝑢 for	A:	Same	array

Output	𝑣 ∈ 𝐴(𝑢):	Sorted	version	of	𝐴[1. . 𝑛]

Output	y ∈ 𝐵(𝑥):	𝐴[l
_
]

A	=	MergeSort
B	=	Median

Wrap-up

Next	time	we	will	see	examples	of	using	reductions	to	solve	problems

Suggested	Reading:
• Reductions	on	Wikipedia:	https://en.wikipedia.org/wiki/Reduction_(complexity)
• (very	optional	for	now)	Erickson	Chapter	12

• He	talks	about	reductions	starting	in	12.5
• The	first	4	sections	will	be	more	relevant	for	the	last	week	of	classes

Work	on	homework	5!

