Lecture 16: Floyd-Fulkerson

Tim LaRock
larock.t@northeastern.edu
bit.ly/cs3000syllabus

Business

Homework 5 released this morning, due next Tuesday the 9t at
11:59PM Boston time

Midterm 2 next Wednesday night through Friday night

Question on grades

Last time: Weak MaxFlow-MinCut Duality

* For any s-t flow f and any s-t cut (4, B) val(f) < cap(A4, B)

val() =) fE@ -) f(e)

e from A-B e from B-A

< Z f(e) (by non-negativity)

e from A-B

< z c(e) = cap(4, B) (definition of capacity)

e from A-B

* If fisaflow, (4,B) isacut,and val(f) = cap(4, B), then
f is a max flow and (4, B) is a min cut

Augmenting Paths

* Givenanetwork G = (V,E,s,t,{c(e)}) and aflow f, an
augmenting path P is an s — t path such that f(e) < c(e)
for every edge e € P

1
10 10

20 10

30 0 /6>

10 20

o\@/o

Augmenting Paths

* Given anetwork G = (V,E,s,t,{c(e)}) and aflow f, an
augmenting path P isan s — t path such that f(e) < c(e)
for every edge e € P

1
10/\ 10 Adding uniform flow
20 10 on an augmenting
\ path results in a new
30 0 /@ valid s-t flow!
10 20

1o\®/10

Greedy Max Flow

e Start with f(e) = 0 for alledges e € E
* Find an augmenting path P
* Repeat until you get stuck

1
0 0

20 10

30 0 /@

10 20

o\@/o

Does Greedy Work?

* Greedy gets stuck before finding a max flow
 How can we get from our solution to the max flow?

1 1
20 0 20 10

20 10 20 10

30 20 /@ 30 10

10 20 10 20

o\@/zo 10\@/20
optimal

greedy

Residual Graphs

* Original edge: e = (u,v) € E.

* Flow f(e), capacity c(e) f((s))

* Residual edge

* Allows “undoing” flow cle) —f(e) o
« e = (u,v)ande® = (v,u).
e Residual capacity

R

fle) ¢©

* Residual graph Gf = (V, Ef)
* Edges with positive residual capacity.
 Ef ={e: f(e) < c(e)} U {ef: c(e) > 0}

Augmenting Paths in Residual Graphs

* Let Gf be a residual graph

* Let P be an augmenting path in the residual graph
* Fact: f° = Augment(Gy, P) is a valid flow

Augment (G;, P)
b <« the minimum capacity of an edge in P
for e € P
if e € E: f(e) « f£f(e) + b
else: f(e) « f£f(e) - b
return £

Augmenting Paths in Residual Graphs

* Let Gf be a residual graph

* Let P be an augmenting path in the residual graph
* Fact: f° = Augment(Gy, P) is a valid flow

Augment (G;, P)
b <« the minimum capacity of an edge in P
for e € P
if e € E: f(e) « f£f(e) + b
else: f(e) « f£f(e) - b
return £

rf(u—>v)+F if u»veP
Note: This is the same process as f(u=v) = { f(u—v)—F

ifvoueP
the recurrence in Erickson 10.3!

i f(u-v) otherwise

Ford-Fulkerson Algorithm

FordFulkerson(G,s, t, {c(e) })
for e € E: f(e) « 0
G; is the residual graph

while (there is an s-t path P in Gy)
f < Augment (G, P)
update G;

return £

Augment (G., P)
b < the minimum capacity of an edge in P
for e € P
if e € E: f(e) « f£f(e) + b
else: f(e) « £f(e) - b
return £

Ford-Fulkerson Algorithm

e Start with f(e) = 0 for alledgese € E
* Find an augmenting path P in the residual graph

* Repeat until you get stuck

30 0 >ﬁ) (s)

20

10

Ford-Fulkerson Algorithm

e Start with f(e) = 0 for alledgese € E

* Find an augmenting path P in the residual graph

* Repeat until you get stuck

1
0 0
20 10 \

Ford-Fulkerson Algorithm

e Start with f(e) = 0 for alledgese € E
* Find an augmenting path P in the residual graph

* Repeat until you get stuck

1
0 0

20 10 20

30 O /QD

20 10

10

Ford-Fulkerson Algorithm

e Start with f(e) = 0 for alledgese € E
* Find an augmenting path P in the residual graph

* Repeat until you get stuck

Ford-Fulkerson Algorithm

e Start with f(e) = 0 for alledgese € E
* Find an augmenting path P in the residual graph

* Repeat until you get stuck

Ford-Fulkerson Algorithm

e Start with f(e) = 0 for alledgese € E
* Find an augmenting path P in the residual graph

* Repeat until you get stuck

— e €FE

1 1 —— eRgE
20 0

20 10

20 10
\ 10 \

10 20 10

Ford-Fulkerson Algorithm

e Start with f(e) = 0 for alledgese € E
* Find an augmenting path P in the residual graph

* Repeat until you get stuck

— e €FE

1 1 —— eRgE
20 10

20 10

20 10
\ 10 \
30 10 /.@ 20 /®
20

10 20 10

10\@/20

Ford-Fulkerson Algorithm

e Start with f(e) = 0 for alledgese € E
* Find an augmenting path P in the residual graph

* Repeat until you get stuck

"
20 10
20 10
\ .
30 10 /@ 10

10 20 10
10 \@/ 20
O

20 10

Running Time of Ford-Fulkerson

For integer capacities, < val(f*) augmentation steps

Can perform each augmentation step in O(m) time
 find augmenting path in O(m)
* augment the flow along path in O(n)
« update the residual graph along the path in 0(n)

For integer capacities, FF runs in O(m : val(f*)) time
* 0(mn) time if all capacities arec, = 1
* O(mnCy,y) time for any integer capacities < Cpax

We can speed FF up by choosing smarter augmenting paths
* Fattest path: Choose the augmenting path with max capacity
* Use modified BFS/MST or similar to find max capacity path
« < mlnv* augmenting paths
e O(m?Innlnv*) total running time
» Shortest augmenting paths (“shortest augmenting path”)
e 0(m?n) time

Correctness of Ford-Fulkerson

* Theorem: f is a maximum s-t flow if and only if there is no
augmenting s-t path in Gy

* Strong MaxFlow-MinCut Duality: The value of the max s-t
flow equals the capacity of the min s-t cut

* WEe’ll prove that the following are equivalent for all f
1. There exists a cut (4, B) such that val(f) = cap(4, B)
2. Flow f is a maximum flow
3. There is no augmenting pathin G¢

Optimality of Ford-Fulkerson

* Theorem: the following are equivalent for all f
1. There exists a cut (4, B) such that val(f) = cap(4, B)
2. Flow f is a maximum flow
3. There is no augmenting path in Gy

Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in G¢, then there is a
cut (4, B) such that val(f) = cap(4, B)

Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in G¢, then there is a
cut (4, B) such that val(f) = cap(4, B)

* Sanity check: Is there such a cut in our example?

1
20 10

20

10

N

30 10 /ﬁ)

20
20

20

AN

Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in G¢, then there is a
cut (4, B) such that val(f) = cap(4, B)

 Let A be the set of nodes reachable from s in Gf
* Let B be all other nodes
* Key observation: no edges in Gf go from A to B

20 10 20 10

30 10 /@ 10 /@
20
10 20 10
10 \@/ 20
O

Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in G¢, then there is a
cut (4, B) such that val(f) = cap(A, B)

 Let A be the set of nodes reachable from s in Gf
* Let B be all other nodes
* Key observation: no edges in Gf go from A to B

original network

* IfeisA — B, then f(e) = c(e)
*IfeisB — A,then f(e) =0

Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in G¢, then there is a
cut (4, B) such that val(f) = cap(A, B)

 Let A be the set of nodes reachable from s in Gf
* Let B be all other nodes
* Key observation: no edges in Gf go from A to B

original network

* IfeisA — B, then f(e) = c(e)
*IfeisB — A,then f(e) =0

val()=) f- D f(e)

e:A-B e:B—A

Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in G¢, then there is a
cut (4, B) such that val(f) = cap(A, B)

 Let A be the set of nodes reachable from s in Gf
* Let B be all other nodes
* Key observation: no edges in Gf go from A to B

original network

* IfeisA — B, then f(e) = c(e)
*IfeisB — A,then f(e) =0

val()=) f- D f(e)

e:A-B e:B—A

= > f@©

e:A-B

Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in G¢, then there is a
cut (4, B) such that val(f) = cap(4, B)

 Let A be the set of nodes reachable from s in Gf
e Let B be all other nodes

* Key observation: no edges in Gf go from A to B

original network

e IfeisA — B, then f(e) = c(e)
e IfeisB — A,then f(e) =0

val()=) f- D f(e)

e:A-B e:B—oA

Z f(e) No augmenting path in G implies that we have a maximum cut!
e:A-B

z c(e) = cap(A, B)

e:A-B

summary

* The Ford-Fulkerson Algorithm solves maximum s-t flow

* Running time O(m - val(f*)) in networks with integer capacities

e Strong MaxFlow-MinCut Duality: max flow = min cut

* The value of the maximum s-t flow equals the capacity of the
minimum s-t cut

* If f* is a maximum s-t flow, then the set of nodes reachable from s
in G+ gives a minimum cut

* Given a max-flow, can find a min-cut in time O(n + m)

* Every graph with integer capacities has an integer
maximum flow

* Ford-Fulkerson will return an integer maximum flow

Applications of Network Flow

Applications of Network Flow

e Algorithms for maximum flow can be used to solve:
* Bipartite Matching

Disjoint Paths

Survey Design

Matrix Rounding

Auction Design

Fair Division

Project Selection

Baseball Elimination

Airline Scheduling

Applications of Network Flow

e Algorithms for maximum flow can be used to solve:
* Bipartite Matching
Disjoint Paths
Survey Design
Matrix Rounding In general: If a problem can

Auction Design be solved in polynomial
time, maximum flow can be

used to solve it!

Fair Division

Project Selection
Baseball Elimination
Airline Scheduling

Reduction

* Definition: a reduction is an efficient algorithm
that solves problem A using calls to function
that solves problem B.

Mechanics of Reductions

 What exactly is a problem?
* A set of legal inputs X

* Ex: An array of numbers A[1..n]

* Aset A(x) of legal outputs foreachx € X

* Ex: The array A4 in sorted order

* Example: integer maximum flow

* Input: G = (V,E, s, t,{c.}) where c, is an integer for
everye € E

 Output: A maximum flow {f (e)} for G where f(e) is an
integer for every e € E suchthat 0 < f(e) < c,

Mechanics of Reductions

 What exactly is a problem?
* A set of legal inputs X

* Ex: An array of numbers A[1..n]

* Aset A(x) of legal outputs foreachx € X

* Ex: The array A4 in sorted order

Mechanics of Reductions

4)
Input x for # Input u for »
Problem B Problem A

SolveA
Output y in B(x) « Output vin A(u)
for Problem B for Problem A

_ J

In the simplest case, we just call SolveA a single time. In fact
we may use SolveA as a subroutine to a more complex
reduction.

When is a Reduction Correct?

4)
Input x for # Input u for »
Problem B Problem A

SolveA

Output y in B(x) ‘ Output vin A(u) h
for Problem B for Problem A

_ J

Then for every valid input x, if v is a
valid output in A(u), then y is a valid
output in B(x).

Assume that for valid input u, SolveA
returns a valid output v in A(u).

What is the Running Time?

Input x for @ Input u for @[R
Problem B » Problem A »
(=

SolveA

Output y in B(x) « Output vin A(u)
for Problem B @ for Problem A 9 y

Running time: (1) +(2)+(3)

. A = MaxFl
Example: Minimum Cut B~ MinCut

4)
Input x for # Input u for »
Problem B Problem A

SolveA
Output y in B(x) « @ut v in A(u)
for Problem B for Problem A
\§ J
Input x forB: G = (V,E,s,t,{c,}) l'
l' Outputy € B(x): G = (V,E, s, t, {c.})
Input u forA: G = (V,E,s,t,{c.}) 1. Take f, compute the residual graph G
l 2. Find the nodes reachable from s in G¢

3. Output these nodes
Outputv € A(u): G = (V,E, s, t, {c.})

Example: Median

Input x for ' Input u for
GoblemD Goblem A

Output y in B(x) « Output vin A(u)
for Problem B for Problem A

Input x for B: Array of length n, A[1..n]
$

Input u for A: Same array

3
Output v € A(u): Sorted version of A[1..n]

$
Outputy € B(x): A E‘ |

A = MergeSort

B = Median
4)
-
SolveA
(=
_ J

Wrap-up

Next time we will see examples of using reductions to solve problems

Suggested Reading:
* Reductions on Wikipedia: https://en.wikipedia.org/wiki/Reduction (complexity)

 (very optional for now) Erickson Chapter 12
* He talks about reductions starting in 12.5
* The first 4 sections will be more relevant for the last week of classes

Work on homework 5!

