Lecture 16: Floyd-Fulkerson
 Tim LaRock
 larock.t@northeastern.edu
 bit.ly/cs3000syllabus

Business

Homework 5 released this morning, due next Tuesday the $9^{\text {th }}$ at 11:59PM Boston time

Midterm 2 next Wednesday night through Friday night
Question on grades

Last time: Weak MaxFlow-MinCut Duality

- For any s-t flow f and any s-t cut $(A, B) \operatorname{val}(f) \leq \operatorname{cap}(A, B)$

$$
\begin{array}{rlr}
\operatorname{val}(f) & =\sum_{e \text { from }_{A \rightarrow B}} f(e)-\sum_{e \text { from }} f(e) & \\
& \leq \sum_{e \text { from }_{A \rightarrow B}} f(e) & \text { (by non-negativity) } \\
& \leq \sum_{\text {efrom }}^{A \rightarrow B} \\
c(e)=\operatorname{cap}(A, B) & \text { (definition of capacity) }
\end{array}
$$

- If f is a flow, (A, B) is a cut, and $\operatorname{val}(f)=\operatorname{cap}(A, B)$, then f is a max flow and (A, B) is a min cut

Augmenting Paths

- Given a network $G=(V, E, s, t,\{c(e)\})$ and a flow f, an augmenting path P is an $s \rightarrow t$ path such that $f(e)<c(e)$ for every edge $e \in P$

Augmenting Paths

- Given a network $G=(V, E, s, t,\{c(e)\})$ and a flow f, an augmenting path P is an $s \rightarrow t$ path such that $f(e)<c(e)$ for every edge $e \in P$

Adding uniform flow on an augmenting path results in a new valid s-t flow!

Greedy Max Flow

- Start with $f(e)=0$ for all edges $e \in E$
- Find an augmenting path P
- Repeat until you get stuck

Does Greedy Work?

- Greedy gets stuck before finding a max flow
- How can we get from our solution to the max flow?

Residual Graphs

- Original edge: $e=(u, v) \in E$.
- Flow $f(e)$, capacity $c(e)$

- Residual edge
- Allows "undoing" flow
- $e=(u, v)$ and $e^{R}=(v, u)$.
- Residual capacity

- Residual graph $G_{f}=\left(V, E_{f}\right)$
- Edges with positive residual capacity.
- $E_{f}=\{e: f(e)<c(e)\} \cup\left\{e^{R}: c(e)>0\right\}$.

Augmenting Paths in Residual Graphs

- Let G_{f} be a residual graph
- Let P be an augmenting path in the residual graph
- Fact: $f^{\prime}=\operatorname{Augment}\left(G_{f}, P\right)$ is a valid flow

```
Augment (Gf, P)
    b}\leftarrow\mathrm{ the minimum capacity of an edge in P
    for e e P
        if e E E: f(e) \leftarrowf(e) + b
        else: f(e) \leftarrowf(e) - b
    return f
```


Augmenting Paths in Residual Graphs

- Let G_{f} be a residual graph
- Let P be an augmenting path in the residual graph
- Fact: $f^{\prime}=\operatorname{Augment}\left(G_{f}, P\right)$ is a valid flow

```
Augment (G G , P)
    b}\leftarrow\mathrm{ the minimum capacity of an edge in P
    for e e P
        if e E E: f(e) \leftarrowf(e) + b
        else: f(e) \leftarrowf(e) - b
    return f
```

$\begin{aligned} & \text { Note: This is the same process as } \\ & \text { the recurrence in Erickson 10.3! }\end{aligned} \quad f^{\prime}(u \rightarrow v)= \begin{cases}f(u \rightarrow v)+F & \text { if } u \rightarrow v \in P \\ f(u \rightarrow v)-F & \text { if } v \rightarrow u \in P \\ f(u \rightarrow v) & \text { otherwise }\end{cases}$

Ford-Fulkerson Algorithm

```
FordFulkerson(G,s,t,{c(e)})
    for e \inE: f(e) \leftarrow0
    Gf
    while (there is an s-t path P in G}\mp@subsup{G}{f}{}\mathrm{ )
        f}\leftarrow\mathrm{ Augment (GG,P)
        update Gf
    return f
```

Augment ($\mathrm{G}_{\mathrm{f}}, \mathrm{P}$)
$\mathrm{b} \leftarrow$ the minimum capacity of an edge in P
for $e \in P$
if $e \in E: \quad f(e) \leftarrow f(e)+b$
else: $\quad f(e) \leftarrow f(e)-b$
return f

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

(1)
(2)

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

Running Time of Ford-Fulkerson

- For integer capacities, $\leq \operatorname{val}\left(f^{*}\right)$ augmentation steps
- Can perform each augmentation step in $O(m)$ time
- find augmenting path in $O(\mathrm{~m})$
- augment the flow along path in $O(n)$
- update the residual graph along the path in $O(n)$
- For integer capacities, FF runs in $O\left(m \cdot \operatorname{val}\left(f^{*}\right)\right)$ time
- $O(m n)$ time if all capacities are $c_{e}=1$
- $O\left(m n C_{\max }\right)$ time for any integer capacities $\leq C_{\max }$
- We can speed FF up by choosing smarter augmenting paths
- Fattest path: Choose the augmenting path with max capacity
- Use modified BFS/MST or similar to find max capacity path
- $\leq m \ln v^{*}$ augmenting paths
- $O\left(m^{2} \ln n \ln v^{*}\right)$ total running time
- Shortest augmenting paths ("shortest augmenting path")
- $O\left(m^{2} n\right)$ time

Correctness of Ford-Fulkerson

- Theorem: f is a maximum s-t flow if and only if there is no augmenting s-t path in G_{f}
- Strong MaxFlow-MinCut Duality: The value of the max s-t flow equals the capacity of the min s-t cut
- We'll prove that the following are equivalent for all f

1. There exists a cut (A, B) such that $\operatorname{val}(f)=\operatorname{cap}(A, B)$
2. Flow f is a maximum flow
3. There is no augmenting path in G_{f}

Optimality of Ford-Fulkerson

- Theorem: the following are equivalent for all f

1. There exists a cut (A, B) such that $\operatorname{val}(f)=\operatorname{cap}(A, B)$
2. Flow f is a maximum flow
3. There is no augmenting path in G_{f}

Optimality of Ford-Fulkerson

- $(\mathbf{3} \rightarrow \mathbf{1})$ If there is no augmenting path in G_{f}, then there is a cut (A, B) such that $\operatorname{val}(f)=\operatorname{cap}(A, B)$

Optimality of Ford-Fulkerson

- $(\mathbf{3} \rightarrow \mathbf{1})$ If there is no augmenting path in G_{f}, then there is a cut (A, B) such that $\operatorname{val}(f)=\operatorname{cap}(A, B)$
- Sanity check: Is there such a cut in our example?

Optimality of Ford-Fulkerson

- $(\mathbf{3} \rightarrow \mathbf{1})$ If there is no augmenting path in G_{f}, then there is a cut (A, B) such that $\operatorname{val}(f)=\operatorname{cap}(A, B)$
- Let A be the set of nodes reachable from s in G_{f}
- Let B be all other nodes
- Key observation: no edges in G_{f} go from A to B

Optimality of Ford-Fulkerson

- $(\mathbf{3} \rightarrow \mathbf{1})$ If there is no augmenting path in G_{f}, then there is a cut (A, B) such that $\operatorname{val}(f)=\operatorname{cap}(A, B)$
- Let A be the set of nodes reachable from s in G_{f}
- Let B be all other nodes
- Key observation: no edges in G_{f} go from A to B
- If e is $A \rightarrow B$, then $f(e)=c(e)$
- If e is $B \rightarrow A$, then $f(e)=0$

Optimality of Ford-Fulkerson

- $(\mathbf{3} \rightarrow \mathbf{1})$ If there is no augmenting path in G_{f}, then there is a cut (A, B) such that $\operatorname{val}(f)=\operatorname{cap}(A, B)$
- Let A be the set of nodes reachable from s in G_{f}
- Let B be all other nodes
- Key observation: no edges in G_{f} go from A to B
- If e is $A \rightarrow B$, then $f(e)=c(e)$
- If e is $B \rightarrow A$, then $f(e)=0$

$$
\operatorname{val}(f)=\sum_{e: A \rightarrow B} f(e)-\sum_{e: B \rightarrow A} f(e)
$$

Optimality of Ford-Fulkerson

- $(\mathbf{3} \rightarrow \mathbf{1})$ If there is no augmenting path in G_{f}, then there is a cut (A, B) such that $\operatorname{val}(f)=\operatorname{cap}(A, B)$
- Let A be the set of nodes reachable from s in G_{f}
- Let B be all other nodes
- Key observation: no edges in G_{f} go from A to B
- If e is $A \rightarrow B$, then $f(e)=c(e)$
- If e is $B \rightarrow A$, then $f(e)=0$

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e: A \rightarrow B} f(e)-\sum_{e: B \rightarrow A} f(e) \\
& =\sum_{e: A \rightarrow B} f(e)
\end{aligned}
$$

Optimality of Ford-Fulkerson

- $(\mathbf{3} \rightarrow \mathbf{1})$ If there is no augmenting path in G_{f}, then there is a cut (A, B) such that $\operatorname{val}(f)=\operatorname{cap}(A, B)$
- Let A be the set of nodes reachable from s in G_{f}
- Let B be all other nodes
- Key observation: no edges in G_{f} go from A to B
- If e is $A \rightarrow B$, then $f(e)=c(e)$
- If e is $B \rightarrow A$, then $f(e)=0$

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e: A \rightarrow B} f(e)-\sum_{e: B \rightarrow A} f(e) \\
& =\sum_{e: A \rightarrow B} f(e) \\
& =\sum_{e: A \rightarrow B} c(e)=\operatorname{cap}(A, B)
\end{aligned}
$$

No augmenting path in G_{f} implies that we have a maximum cut!

Summary

- The Ford-Fulkerson Algorithm solves maximum s-t flow
- Running time $O\left(m \cdot v a l\left(f^{*}\right)\right)$ in networks with integer capacities
- Strong MaxFlow-MinCut Duality: max flow = min cut
- The value of the maximum s-t flow equals the capacity of the minimum s-t cut
- If f^{*} is a maximum s-t flow, then the set of nodes reachable from s in $G_{f^{*}}$ gives a minimum cut
- Given a max-flow, can find a min-cut in time $O(n+m)$
- Every graph with integer capacities has an integer maximum flow
- Ford-Fulkerson will return an integer maximum flow

Applications of Network Flow

Applications of Network Flow

- Algorithms for maximum flow can be used to solve:
- Bipartite Matching
- Disjoint Paths
- Survey Design
- Matrix Rounding
- Auction Design
- Fair Division
- Project Selection
- Baseball Elimination
- Airline Scheduling
- ...

Applications of Network Flow

- Algorithms for maximum flow can be used to solve:
- Bipartite Matching
- Disjoint Paths
- Survey Design
- Matrix Rounding
- Auction Design
- Fair Division
- Project Selection
- Baseball Elimination
- Airline Scheduling
- ...

In general: If a problem can be solved in polynomial time, maximum flow can be used to solve it!

Reduction

- Definition: a reduction is an efficient algorithm that solves problem A using calls to function that solves problem B.

Mechanics of Reductions

-What exactly is a problem?

- A set of legal inputs \boldsymbol{X}
- Ex: An array of numbers $A[1 . . n]$
- A set $\boldsymbol{A}(\boldsymbol{x})$ of legal outputs for each $\boldsymbol{x} \in \boldsymbol{X}$
- Ex: The array A in sorted order
- Example: integer maximum flow
- Input: $G=\left(V, E, s, t,\left\{c_{e}\right\}\right)$ where c_{e} is an integer for every $e \in E$
- Output: A maximum flow $\{f(e)\}$ for G where $f(e)$ is an integer for every $e \in E$ such that $0 \leq f(e) \leq c_{e}$

Mechanics of Reductions

-What exactly is a problem?

- A set of legal inputs \boldsymbol{X}
- Ex: An array of numbers $A[1 . . n]$
- A set $\boldsymbol{A}(\boldsymbol{x})$ of legal outputs for each $\boldsymbol{x} \in \boldsymbol{X}$
- Ex: The array A in sorted order

Mechanics of Reductions

In the simplest case, we just call SolveA a single time. In fact we may use SolveA as a subroutine to a more complex reduction.

When is a Reduction Correct?

Assume that for valid input u, SolveA returns a valid output v in $A(u)$.

Then for every valid input x, if v is a valid output in $A(u)$, then y is a valid output in $B(x)$.

What is the Running Time?

Running time: (1)+2 + 3

```
Example: Minimum Cut
A = MaxFlow
B = MinCut
```


Input x for B: $G=\left(V, E, s, t,\left\{c_{e}\right\}\right)$

Output $y \in B(x): G=\left(V, E, s, t,\left\{c_{e}\right\}\right)$

Input u for A : $G=\left(V, E, s, t,\left\{c_{e}\right\}\right)$

Output $v \in A(u): G=\left(V, E, s, t,\left\{c_{e}\right\}\right)$

1. Take f, compute the residual graph G_{f}
2. Find the nodes reachable from s in G_{f}
3. Output these nodes

Example: Median

$$
\begin{aligned}
& \text { A }=\text { MergeSort } \\
& \text { B }=\text { Median }
\end{aligned}
$$

Input x for B: Array of length $n, A[1 . . n]$
Input u for A: Same array
Output $v \in A(u)$: Sorted version of $A[1 . . n]$
Output $\mathrm{y} \in B(x): A\left[\left\lfloor\frac{n}{2}\right\rfloor\right]$

Wrap-up

Next time we will see examples of using reductions to solve problems
Suggested Reading:

- Reductions on Wikipedia: https://en.wikipedia.org/wiki/Reduction (complexity)
- (very optional for now) Erickson Chapter 12
- He talks about reductions starting in 12.5
- The first 4 sections will be more relevant for the last week of classes

Work on homework 5!

