
Lecture	16:	Floyd-Fulkerson
Tim	LaRock

larock.t@northeastern.edu
bit.ly/cs3000syllabus

Business

Homework	5	released	this	morning,	due	next	Tuesday	the	9th at	
11:59PM	Boston	time

Midterm	2	next	Wednesday	night	through	Friday	night

Question	on	grades

• For	any	s-t	flow	! and	any	s-t	cut	(#, %) '() ! ≤ +(, #, %

• If	! is	a	flow,	(#, %) is	a	cut,	and	'()(!) = +(,(#, %),	then	
! is	a	max	flow	and	(#, %) is	a	min	cut

≤ . !(/)
�

1	3456	7→9

≤ . + /
�

1	3456	7→9
= +(,(#, %)

'() ! 	= 	 . !(/)
�

1	3456	7→9
		−	 . !(/)

�

1	3456	9→7

(by	non-negativity)

(definition	of	capacity)

Last	time:	Weak	MaxFlow-MinCut	Duality

Augmenting	Paths
• Given	a	network	;	 = 	 (<, =, >, ?, + /) and	a	flow	!,	an	
augmenting	path	@ is	an	> → ? path	such	that	!(/) < +(/)
for	every	edge	/ ∈ @

s

1

2

t

10

10

10 10

0 0

0

20

20

30

Augmenting	Paths
• Given	a	network	;	 = 	 (<, =, >, ?, + /) and	a	flow	!,	an	
augmenting	path	@ is	an	> → ? path	such	that	!(/) < +(/)
for	every	edge	/ ∈ @

s

1

2

t

10

10

10 10

10 10

0

20

20

30

Adding	uniform	flow	
on	an	augmenting	
path	results	in	a	new	
valid	s-t	flow!

Greedy	Max	Flow
• Start	with	! / = 0 for	all	edges	/ ∈ =
• Find	an	augmenting	path @
• Repeat	until	you	get	stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Does	Greedy	Work?
• Greedy	gets	stuck	before	finding	a	max	flow
• How	can	we	get	from	our	solution	to	the	max	flow?

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

10

10

20 10

10 20

10

20

20

30

greedy optimal

Residual	Graphs
• Original	edge:		/	 = D, ' ∈ 	=.

• Flow !(/),	capacity	+(/)

• Residual	edge
• Allows	“undoing”	flow
• / = D, ' and /E = ', D .
• Residual	capacity

• Residual	graph ;3 = <, =3
• Edges	with	positive	residual	capacity.
• =!	 = 	 / ∶ 	! / < 	+ / 	∪ 	 /H ∶ 	+ / > 	0 .

u v!(/)
+(/)

u v

+ / − !(/)

!(/) /E

/

Augmenting	Paths	in	Residual	Graphs
• Let	;3 be	a	residual	graph
• Let	@ be	an	augmenting	path	in	the	residual	graph
• Fact: !’	 = 	Augment(;3, @) is	a	valid	flow

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

Augmenting	Paths	in	Residual	Graphs
• Let	;3 be	a	residual	graph
• Let	@ be	an	augmenting	path	in	the	residual	graph
• Fact: !’	 = 	Augment(;3, @) is	a	valid	flow

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

Note:	This	is	the	same	process	as	
the	recurrence	in	Erickson	10.3!

Ford-Fulkerson	Algorithm

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

FordFulkerson(G,s,t,{c(e)})
for e Î E: f(e) ¬ 0
Gf is the residual graph

while (there is an s-t path P in Gf)
f ¬ Augment(Gf,P)
update Gf

return f

Ford-Fulkerson	Algorithm
• Start	with	! / = 0 for	all	edges	/ ∈ =
• Find	an	augmenting	path @ in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30 s

1

2

t

Ford-Fulkerson	Algorithm
• Start	with	! / = 0 for	all	edges	/ ∈ =
• Find	an	augmenting	path @ in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30 s

1

2

t

10

10

20

20

30

/ ∈ =
/E ∉ =

Ford-Fulkerson	Algorithm
• Start	with	! / = 0 for	all	edges	/ ∈ =
• Find	an	augmenting	path @ in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30 s

1

2

t

10

10

20

20

30

/ ∈ =
/E ∉ =

Ford-Fulkerson	Algorithm
• Start	with	! / = 0 for	all	edges	/ ∈ =
• Find	an	augmenting	path @ in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

20

20

30s

1

2

t

10

10

20 0

0 20

20

20

20

30

/ ∈ =
/E ∉ =

Ford-Fulkerson	Algorithm
• Start	with	! / = 0 for	all	edges	/ ∈ =
• Find	an	augmenting	path @ in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

10

10

20

/ ∈ =
/E ∉ =

10

20

20

Ford-Fulkerson	Algorithm
• Start	with	! / = 0 for	all	edges	/ ∈ =
• Find	an	augmenting	path @ in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

10

10

20

/ ∈ =
/E ∉ =

10

20

20

Ford-Fulkerson	Algorithm
• Start	with	! / = 0 for	all	edges	/ ∈ =
• Find	an	augmenting	path @ in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

20 10

10 20

10

20

20

30 s

1

2

t

10

10

20

/ ∈ =
/E ∉ =

10

20

20

Ford-Fulkerson	Algorithm
• Start	with	! / = 0 for	all	edges	/ ∈ =
• Find	an	augmenting	path @ in	the	residual	graph
• Repeat	until	you	get	stuck

s t

10

10

s

1

2

t

10

10

20 10

10 20

10

20

20

30

1

2

10

20

20

20

Running	Time	of	Ford-Fulkerson
• For	integer	capacities,	≤ '() !∗ augmentation	steps

• Can	perform	each	augmentation	step	in	U V time
• find	augmenting	path	in	U V
• augment	the	flow	along	path	in	U W
• update	the	residual	graph	along	the	path	in	U W

• For	integer	capacities,	FF	runs	in	U V ⋅ '() !∗ time
• U VW time	if	all	capacities	are	+1 = 1
• U VWZ[\] time	for	any	integer	capacities	≤ Z[\]

• We	can	speed	FF	up	by	choosing	smarter	augmenting	paths
• Fattest	path:	Choose	the	augmenting	path	with	max	capacity

• Use	modified	BFS/MST	or	similar	to	find	max	capacity	path
• ≤ V ln '∗ augmenting	paths	
• U(V_ ln W ln '∗) total	running	time

• Shortest	augmenting	paths	(“shortest	augmenting	path”)
• U(V_W) time

Correctness	of	Ford-Fulkerson
• Theorem: ! is	a	maximum	s-t	flow	if	and	only	if	there	is	no	
augmenting	s-t	path	in	;3

• Strong	MaxFlow-MinCut Duality:	The	value	of	the	max	s-t	
flow	equals	the	capacity	of	the	min	s-t	cut	

• We’ll	prove	that	the	following	are	equivalent	for	all	!
1. There	exists	a	cut	(#, %) such	that	'() ! = +(,(#, %)
2. Flow	! is	a	maximum	flow
3. There	is	no	augmenting	path	in	;3

Optimality	of	Ford-Fulkerson
• Theorem:	the	following	are	equivalent	for	all	!

1. There	exists	a	cut	(#, %) such	that	'() ! = +(,(#, %)
2. Flow	! is	a	maximum	flow
3. There	is	no	augmenting	path	in	;3

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	;3,	then	there	is	a	
cut	(#, %) such	that	'()(!) = +(,(#, %)

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	;3,	then	there	is	a	
cut	(#, %) such	that	'()(!) = +(,(#, %)

• Sanity	check:	Is	there	such	a	cut	in	our	example?

s t

10

10

s

1

2

t

10

10

20 10

10 20

10

20

20

30

1

2

10

20

20

20

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	;3,	then	there	is	a	
cut	(#, %) such	that	'()(!) = +(,(#, %)
• Let	# be	the	set	of	nodes	reachable	from	> in	;3
• Let	% be	all	other	nodes
• Key	observation:	no	edges	in	;3 go	from	# to	%

s t

10

10

s

1

2

t

10

10

20 10

10 20

10

20

20

30

1

2

10

20

20

20

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	;3,	then	there	is	a	
cut	(#, %) such	that	'()(!) = +(,(#, %)
• Let	# be	the	set	of	nodes	reachable	from	> in	;3
• Let	% be	all	other	nodes
• Key	observation:	no	edges	in	;3 go	from	# to	%

• If	/ is	# → %,	then	! / = + /
• If	/ is	% → #,	then	! / = 0

original network

s

t

A B

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	;3,	then	there	is	a	
cut	(#, %) such	that	'()(!) = +(,(#, %)
• Let	# be	the	set	of	nodes	reachable	from	> in	;3
• Let	% be	all	other	nodes
• Key	observation:	no	edges	in	;3 go	from	# to	%

• If	/ is	# → %,	then	! / = + /
• If	/ is	% → #,	then	! / = 0

original network

s

t

A B

'() ! = . ! / −	 . !(/)
�

1:9→7

�

1:7→9

= . ! /
�

1:7→9

= . + /
�

1:7→9
= +(,(#, %)

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	;3,	then	there	is	a	
cut	(#, %) such	that	'()(!) = +(,(#, %)
• Let	# be	the	set	of	nodes	reachable	from	> in	;3
• Let	% be	all	other	nodes
• Key	observation:	no	edges	in	;3 go	from	# to	%

• If	/ is	# → %,	then	! / = + /
• If	/ is	% → #,	then	! / = 0

original network

s

t

A B

'() ! = . ! / −	 . !(/)
�

1:9→7

�

1:7→9

= . ! /
�

1:7→9

= . + /
�

1:7→9
= +(,(#, %)

Optimality	of	Ford-Fulkerson
• (3	→ 1) If	there	is	no	augmenting	path	in	;3,	then	there	is	a	
cut	(#, %) such	that	'()(!) = +(,(#, %)
• Let	# be	the	set	of	nodes	reachable	from	> in	;3
• Let	% be	all	other	nodes
• Key	observation:	no	edges	in	;3 go	from	# to	%

• If	/ is	# → %,	then	! / = + /
• If	/ is	% → #,	then	! / = 0

original network

s

t

A B

= . + /
�

1:7→9
= +(,(#, %)

No	augmenting	path	in	;3 implies	that	we	have	a	maximum	cut!= . ! /
�

1:7→9

'() ! = . ! / −	 . !(/)
�

1:9→7

�

1:7→9

Summary
• The	Ford-Fulkerson	Algorithm	solves	maximum	s-t	flow	

• Running	time	U V ⋅ '() !∗ in	networks	with	integer	capacities

• Strong	MaxFlow-MinCut Duality:	max	flow	=	min	cut
• The	value	of	the	maximum	s-t	flow	equals	the	capacity	of	the	
minimum	s-t	cut	

• If	!∗ is	a	maximum	s-t	flow,	then	the	set	of	nodes	reachable	from	s	
in	;3∗ gives	a	minimum	cut

• Given	a	max-flow,	can	find	a	min-cut	in	time	U W +V

• Every	graph	with	integer	capacities	has	an	integer	
maximum	flow
• Ford-Fulkerson	will	return	an	integer	maximum	flow

Applications	of	Network	Flow

Applications	of	Network	Flow

• Algorithms	for	maximum	flow	can	be	used	to	solve:
• Bipartite	Matching
• Disjoint	Paths
• Survey	Design
• Matrix	Rounding
• Auction	Design
• Fair	Division
• Project	Selection
• Baseball	Elimination
• Airline	Scheduling
• …

Applications	of	Network	Flow

• Algorithms	for	maximum	flow	can	be	used	to	solve:
• Bipartite	Matching
• Disjoint	Paths
• Survey	Design
• Matrix	Rounding
• Auction	Design
• Fair	Division
• Project	Selection
• Baseball	Elimination
• Airline	Scheduling
• …

In	general:	If	a	problem	can	
be	solved	in	polynomial	

time,	maximum	flow	can	be	
used	to	solve	it!

Reduction

• Definition:	a	reduction is	an	efficient	algorithm	
that	solves	problem	A using	calls	to	function							
that	solves	problem	B.

Mechanics	of	Reductions

• What	exactly	is	a	problem?
• A	set	of	legal	inputs	b

• Ex:	An	array	of	numbers	#[1. . W]
• A	set	e(f) of	legal	outputs	for	each	f ∈ b

• Ex:	The	array	# in	sorted	order

• Example:	integer	maximum	flow

• Input:	; = (<, =, >, ?, +1) where	+1 is	an	integer	for	
every	/ ∈ =

• Output:	A	maximum	flow	{! / } for	; where	!(/) is	an	
integer	for	every	/ ∈ = such	that	0 ≤ ! / ≤ +1

Mechanics	of	Reductions

• What	exactly	is	a	problem?
• A	set	of	legal	inputs	b

• Ex:	An	array	of	numbers	#[1. . W]
• A	set	e(f) of	legal	outputs	for	each	f ∈ b

• Ex:	The	array	# in	sorted	order

• Example:	integer	maximum	flow

• Input:	; = (<, =, >, ?, +1) where	+1 is	an	integer	for	
every	/ ∈ =

• Output:	A	maximum	flow	{! / } for	; where	!(/) is	an	
integer	for	every	/ ∈ = such	that	0 ≤ ! / ≤ +1

Mechanics	of	Reductions

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

In	the	simplest	case,	we	just	call	SolveA a	single	time.	In	fact	
we	may	use	SolveA as	a	subroutine	to	a	more	complex	

reduction.

When	is	a	Reduction	Correct?

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

Then	for	every	valid	input	i,	if	' is	a	
valid	output	in	# D ,	then	j is	a	valid	
output	in	%(i).

Assume	that	for	valid	input	D,	SolveA
returns	a	valid	output	' in	#(D).

What	is	the	Running	Time?

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

1 2

3

Running	time:							+							+					1 2 3

Example:	Minimum	Cut

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

A	=	MaxFlow
B	=	MinCut

Input	i for	B:	; = (<, =, >, ?, +1)

Input	D for	A:	; = (<, =, >, ?, +1)

Output	' ∈ #(D):	; = (<, =, >, ?, +1)

Output	j ∈ %(i):	; = (<, =, >, ?, +1)

1. Take	!,	compute	the	residual	graph	;3
2. Find	the	nodes	reachable	from	> in	;3
3. Output	these	nodes

Example:	Median

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

Input	i for	B:	Array	of	length	W,	# 1. . W

Input	D for	A:	Same	array

Output	' ∈ #(D):	Sorted	version	of	#[1. . W]

Output	y ∈ %(i):	#[l_]

A	=	MergeSort
B	=	Median

Wrap-up

Next	time	we	will	see	examples	of	using	reductions	to	solve	problems

Suggested	Reading:
• Reductions	on	Wikipedia:	https://en.wikipedia.org/wiki/Reduction_(complexity)
• (very	optional	for	now)	Erickson	Chapter	12

• He	talks	about	reductions	starting	in	12.5
• The	first	4	sections	will	be	more	relevant	for	the	last	week	of	classes

Work	on	homework	5!

