
Lecture	17:	
Max	Flow	à Bipartite	Matching

Tim	LaRock
larock.t@northeastern.edu

bit.ly/cs3000syllabus

Business

Homework	5	due	Tuesday	night	11:59	Boston	time

No	class	Monday,	per	President	Aoun’s office

Class	Tuesday	and	Wednesday	next	week,	no	class	Thursday

Wednesday	will	include	midterm	review	similar	to	last	time

Last	Time:	Mechanics	of	Reductions

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

In	the	simplest	case,	we	just	call	SolveA a	single	time.	In	fact	
we	may	use	SolveA as	a	subroutine	to	a	more	complex	

reduction.

Last	Time:	Minimum	Cut

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

A	=	MaxFlow
B	=	MinCut

Input	! for	B:	" = (%, ', (,), *+)

Input	- for	A:	" = (%, ', (,), *+)

Output	. ∈ 0(-):	" = (%, ', (,), *+)

Output	1 ∈ 2(!):	" = (%, ', (,), *+)

1. Take	3,	compute	the	residual	graph	"4
2. Find	the	nodes	reachable	from	(in	"4
3. Output	these	nodes

Bipartite	Matching	from	Maximum	Flow

Bipartite	Matching

• Input: bipartite	graph	"	 = 	 (%, ')	with	%	 = 6 ∪ 8

Models	any	problem	where	one	type	
of	object	is	assigned	to	another	type:
• doctors	to	hospitals
• jobs	to	processors
• advertisements	to	websites

6 8

Bipartite	Matching

• Input: bipartite	graph	"	 = 	 (%, ')	with	%	 = 6 ∪ 8
• Output: a	maximum	cardinality	matching
• A	matching9 ⊆ ' is	a	set	of	edges	such	that	every	
node	. is	an	endpoint	of	at	most	one	edge	in	9

Models	any	problem	where	one	type	
of	object	is	assigned	to	another	type:
• doctors	to	hospitals
• jobs	to	processors
• advertisements	to	websites

6 8

Bipartite	Matching

• Input: bipartite	graph	"	 = 	 (%, ')	with	%	 = 6 ∪ 8
• Output: a	maximum	cardinality	matching
• A	matching9 ⊆ ' is	a	set	of	edges	such	that	every	
node	. is	an	endpoint	of	at	most	one	edge	in	9

• Cardinality	=	 9

Models	any	problem	where	one	type	
of	object	is	assigned	to	another	type:
• doctors	to	hospitals
• jobs	to	processors
• advertisements	to	websites

6 8

Bipartite	Matching

• There	is	a	reduction	that	uses	integer	maximum	s-t	
flow to	solve	maximum	bipartite	matching.
• Problem	B:	maximum	bipartite	matching	(MBM)
• Problem	A:	integer	maximum	s-t	flow

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

Bipartite	Matching

• There	is	a	reduction	that	uses	integer	maximum	s-t	
flow to	solve	maximum	bipartite	matching.
• Problem	B:	maximum	bipartite	matching	(MBM)
• Problem	A:	integer	maximum	s-t	flow

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

1 2

3

Step	1:	Transform	the	Input

Input	G	for	
MCBM

Input	G’	for	
MAXFLOW

6 8

Step	1:	Transform	the	Input

Input	G	for	
MCBM

Input	G’	for	
MAXFLOW

6 8 6 8

Set	all	edge	capacities	to	* ; = 1

Step	2:	Receive	the	Output

SolveA

Input	G’	for	
MAXFLOW

Output	f	for	
MAXFLOW

Red arrow	means	f(e)=1
Black	means f(e)	=	0

Step	2:	Receive	the	Output

SolveA

Input	G’	for	
MAXFLOW

Output	f	for	
MAXFLOW

Red arrow	means	f(e)=1
Black	means f(e)	=	0

The	matching	will	be	all	
of	the	edges	from	6 to	
8 with	nonzero	flow!

Step	3:	Transform	the	Output

Output	M	for	
MCBM

Output	f	for	
MAXFLOW

Reduction	Recap

• Step	1:	Transform	the	Input
• Given	G	=	(L,R,E),	produce	G’	=	(V,E,{c(e)},s,t)	by...

• ...	orienting edges e	from L	to R
• ...	adding a	node	s with edges from s to every node	in	L
• ...	adding a	node	t with edges from every not in	R to t
• ...	seting	all capacities to 1

• Step	2:	Receive	the	Output
• Find	an	integer	maximum	s-t	flow	f	in		G’

• Step	3:	Transform	the	Output
• Given	an	integer	s-t	flow	f(e)…

• Let	M	be	the	set	of	edges	e	going	from	L	to	R	that	have	f(e)=1

Correctness

• Need	to	show:
• (1)	This algorithm returns a	matching
• (2)	This	matching	is	a	maximum	cardinality	matching

Correctness

• This	algorithm	returns	a	matching

Since	the	capacity	on	every	edge	is	1,	by	conservation	of	flow	we	have:
• For	any	node	in	6,	exactly	one	outgoing	edge	can	have	flow
• For	any	node	in	8,	exactly	one	incoming	edge	can	have	flow

Correctness

• Claim:	G	has	a	matching	of	cardinality	at	least	k	if	
and	only	if	G’	has	an	s-t	flow	of	value	at	least	k

Correctness

• Claim:	G	has	a	matching	of	cardinality	at	least	k	if	
and	only	if	G’	has	an	s-t	flow	of	value	at	least	k

A	matching	of	size	= immediately	
implies	a	valid	flow	of	value	=

Correctness

• Claim:	G	has	a	matching	of	cardinality	at	least	k	if	
and	only	if	G’	has	an	s-t	flow	of	value	at	least	k

A	flow	of	value	= must	have	= edges	
carrying	flow	from	6 to	8

Correctness

• Claim:	G	has	a	matching	of	cardinality	at	least	k	if	
and	only	if	G’	has	an	s-t	flow	of	value	at	least	k

A	flow	of	value	= must	have	= edges	
carrying	flow	from	6 to	8

A	matching	of	size	= immediately	
implies	a	valid	flow	of	value	=

When	= is	the	maximum	cardinality	matching,	there	must	be	a	flow,	and	vice	versa!

Running	Time

• Need	to	analyze	the	time	for:
• (1)	Producing G’	given G

• G’	has	> + 2 nodes	and	> + A edges,	so	we	can	construct	it	in	B(> + A) time
• (2)	Finding a	maximum flow in	G’

• MaxFlow with all capacities 1	can be solved in	B(>A)
• (3)	Producing M	given G’

• We can scan the edges of G’	to find the max flow in	B(> + A) time

• Adding	the	three	together,	we	have

B 2 ⋅ (> + A + >A)
= B(>A)

Running	Time

• Need	to	analyze	the	time	for:
• (1)	Producing G’	given G

• G’	has	> + 2 nodes	and	> + A edges,	so	we	can	construct	it	in	B(> + A) time
• (2)	Finding a	maximum flow in	G’

• MaxFlow with all capacities 1	can be solved in	B(>A)
• (3)	Producing M	given G’

• We can scan the edges of G’	to find the max flow in	B(> + A) time

• Adding	the	three	together,	we	have

B 2 ⋅ (> + A + >A)
= B(>A)

Running	Time

• Need	to	analyze	the	time	for:
• (1)	Producing G’	given G

• G’	has	> + 2 nodes	and	> + A edges,	so	we	can	construct	it	in	B(> + A) time
• (2)	Finding a	maximum flow in	G’

• MaxFlow with all capacities 1	can be solved in	B(>A)
• (3)	Producing M	given G’

• We can scan the edges of G’	to find the max flow in	B(> + A) time

• Adding	the	three	together,	we	have

B 2 ⋅ (> + A + >A)
= B(>A)

Running	Time

• Need	to	analyze	the	time	for:
• (1)	Producing G’	given G

• G’	has	> + 2 nodes	and	> + A edges,	so	we	can	construct	it	in	B(> + A) time
• (2)	Finding a	maximum flow in	G’

• MaxFlow with all capacities 1	can be solved in	B(>A)
• (3)	Producing M	given G’

• We can scan the edges of G’	to find the max flow in	B(> + A) time

• Adding	the	three	together,	we	have

B 2 ⋅ (> + A + >A)
= B(>A)

Running	Time

• Need	to	analyze	the	time	for:
• (1)	Producing G’	given G

• G’	has	> + 2 nodes	and	> + A edges,	so	we	can	construct	it	in	B(> + A) time
• (2)	Finding a	maximum flow in	G’

• MaxFlow with all capacities 1	can be solved in	B(>A)
• (3)	Producing M	given G’

• We can scan the edges of G’	to find the max flow in	B(> + A) time

• Adding	the	three	together,	we	have

B 2 ⋅ (> + A + >A)

Summary

• Can	solve	max	bipartite	matching	in	time	O(nm)	
using	Ford-Fulkerson
• Improvement	for	maximum	flow	gives	improvement	
for	maximum	bipartite	matching

Solving	maximum	integer	s-t	flow	in	a	graph	with	
n+2	nodes	and	m+n edges	and	c(e)	=	1	in	time	T

Solving	maximum	bipartite	matching	in	a	graph	
with	n	nodes	and	m	edges	in	time	T	+	O(m+n)

Wrap-up

No	class	Monday,	per	President	Aoun’s office

Homework	5	due	Tuesday	night	11:59	Boston	time

Class	Tuesday	and	Wednesday	next	week,	no	class	Thursday

Wednesday	will	include	midterm	review	of	some	kind

Stay	safe	and	enjoy	your	weekend

