Lecture 17:
 Max Flow \rightarrow Bipartite Matching

Tim LaRock
larock.t@northeastern.edu
bit.ly/cs3000syllabus

Business

Homework 5 due Tuesday night 11:59 Boston time
No class Monday, per President Aoun's office
Class Tuesday and Wednesday next week, no class Thursday
Wednesday will include midterm review similar to last time

Last Time: Mechanics of Reductions

In the simplest case, we just call SolveA a single time. In fact we may use SolveA as a subroutine to a more complex reduction.

```
Last Time: Minimum Cut
A = MaxFlow
\[
B=\text { MinCut }
\]
```


Input x for B: $G=\left(V, E, s, t,\left\{c_{e}\right\}\right)$

Output $y \in B(x): G=\left(V, E, s, t,\left\{c_{e}\right\}\right)$

Input u for A: $G=\left(V, E, s, t,\left\{c_{e}\right\}\right)$

Output $v \in A(u): G=\left(V, E, s, t,\left\{c_{e}\right\}\right)$

1. Take f, compute the residual graph G_{f}
2. Find the nodes reachable from s in G_{f}
3. Output these nodes

Bipartite Matching from Maximum Flow

Bipartite Matching

- Input: bipartite graph $G=(V, E)$ with $V=L \cup R$

Models any problem where one type of object is assigned to another type:

- doctors to hospitals
- jobs to processors
- advertisements to websites

Bipartite Matching

- Input: bipartite graph $G=(V, E)$ with $V=L \cup R$
- Output: a maximum cardinality matching
- A matching $M \subseteq E$ is a set of edges such that every node v is an endpoint of at most one edge in M

Models any problem where one type of object is assigned to another type:

- doctors to hospitals
- jobs to processors
- advertisements to websites

Bipartite Matching

- Input: bipartite graph $G=(V, E)$ with $V=L \cup R$
- Output: a maximum cardinality matching
- A matching $M \subseteq E$ is a set of edges such that every node v is an endpoint of at most one edge in M
- Cardinality $=|M|$

Models any problem where one type of object is assigned to another type:

- doctors to hospitals
- jobs to processors
- advertisements to websites

Bipartite Matching

- There is a reduction that uses integer maximum s-t flow to solve maximum bipartite matching.
- Problem B: maximum bipartite matching (MBM)
- Problem A: integer maximum s-t flow

Bipartite Matching

- There is a reduction that uses integer maximum s-t flow to solve maximum bipartite matching.
- Problem B: maximum bipartite matching (MBM)
- Problem A: integer maximum s-t flow

Step 1: Transform the Input

$$
\forall_{e \in E}<(e)=1
$$

Step 1: Transform the Input

Set all edge capacities to $c(e)=1$

Step 2: Receive the Output

Step 2: Receive the Output

Step 3: Transform the Output

Output f for MAXFLOW

Reduction Recap

- Step 1: Transform the Input
- Given $G=(L, R, E)$, produce $G^{\prime}=(V, E,\{c(e)\}, s, t)$ by...
- ... orienting edges e from L to R
- ... adding a node s with edges from s to every node in L
- ... adding a node t with edges from every niøf in R to t
- ... seting all capacities to 1
nod
- Step 2: Receive the Output
- Find an integer maximum s-t flow f in G^{\prime}
- Step 3: Transform the Output
- Given an integer s-t flow f(e)...
- Let M be the set of edges e going from L to R that have $f(e)=1$

Correctness

- Need to show:
- (1) This algorithm returns a matching
- (2) This matching is a maximum cardinality matching

Correctness

- This algorithm returns a matching

Since the capacity on every edge is 1 , by conservation of flow we have:

- For any node in L, exactly one outgoing edge can have flow
- For any node in R, exactly one incoming edge can have flow

Correctness

- Claim: G has a matching of cardinality at least k if and only if G^{\prime} has an $s-t$ flow of value at least k

Correctness

- Claim: G has a matching of cardinality at least k if and only if G^{\prime} has an s -t flow of value at least k

A matching of size k immediately

implies a valid flow of value k

Correctness

- Claim: G has a matching of cardinality at least k if and only if G^{\prime} has an s -t flow of value at least k

A flow of value k must have k edges

Correctness

- Claim: G has a matching of cardinality at least k if and only if G^{\prime} has an s -t flow of value at least k

A matching of size k immediately
implies a valid flow of value $k$$\longleftrightarrow \begin{gathered}\text { A flow of value } k \text { must have } k \text { edges } \\ \text { carrying flow from } L \text { to } R\end{gathered}$

When k is the maximum cardinality matching, there must be a flow, and vice versa!

Running Time

- Need to analyze the time for:
- (1) Producing G' given G
- (2) Finding a maximum flow in G^{\prime}
- (3) Producing M given G'

Running Time

- Need to analyze the time for:
- (1) Producing G' given G
- G' has $n+2$ nodes and $n+m$ edges, so we can construct it in $O(n+m)$ time
- (2) Finding a maximum flow in G^{\prime}
- (3) Producing M given G'

Running Time

- Need to analyze the time for:
- (1) Producing G' given G
- G^{\prime} has $n+2$ nodes and $n+m$ edges, so we can construct it in $O(n+m)$ time
- (2) Finding a maximum flow in G'
- MaxFlow with all capacities 1 can be solved in $O(n m)$
- (3) Producing M given G'

Running Time

- Need to analyze the time for:
- (1) Producing G' given G
- G^{\prime} has $n+2$ nodes and $n+m$ edges, so we can construct it in $O(n+m)$ time
- (2) Finding a maximum flow in G'
- MaxFlow with all capacities 1 can be solved in $O(n m)$
- (3) Producing M given G'
- We can scan the edges of G^{\prime} to find the max flow in $O(n+m)$ time

Running Time

- Need to analyze the time for:
- (1) Producing G' given G
- G' has $n+2$ nodes and $n+m$ edges, so we can construct it in $O(n+m)$ time
- (2) Finding a maximum flow in G^{\prime}
- MaxFlow with all capacities 1 can be solved in $O(n m)$
- (3) Producing M given G'
- We can scan the edges of G^{\prime} to find the max flow in $O(n+m)$ time

$$
(1)+(2)+(3)
$$

- Adding the three together, we have

$$
O(2 \cdot(n+m)+n m)
$$

Summary

Solving maximum integer s-t flow in a graph with $\mathrm{n}+2$ nodes and $\mathrm{m}+\mathrm{n}$ edges and $\mathrm{c}(\mathrm{e})=1$ in time T

Solving maximum bipartite matching in a graph with n nodes and m edges in time $T+O(m+n)$

- Can solve max bipartite matching in time $\mathrm{O}(\mathrm{nm})$ using Ford-Fulkerson
- Improvement for maximum flow gives improvement for maximum bipartite matching

Wrap-up

No class Monday, per President Aoun's office
Homework 5 due Tuesday night 11:59 Boston time
Class Tuesday and Wednesday next week, no class Thursday
Wednesday will include midterm review of some kind
Stay safe and enjoy your weekend

