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Business

Homework	5	due	tonight	at	midnight	Boston	time,	solutions	will	be	released	
tomorrow	morning

No	class	tomorrow,	midterm	review	moved	to	today

Extra	credit	assignment	available	as	of	yesterday
• Optional	
• 6	points	on	the	final	exam
• Available	until	Sunday	June	21st

Midterm	2	to	be	released	tomorrow	night,	due	Friday	night
• Topics:	Graph	algorithms	and	network	flow



Greedy	Algorithms

• For	some	problems,	we	can	think	of	simple	decision	making	rules	that	
intuitively	guide	us	towards	a	solution
• Best-first	search:	We	want	to	find	shortest	paths/minimum	trees,	so	only	choose	
edges	that	can	be	included	in	these	solutions!

• Applying	this	idea	does	not	always	work	as	intended!
• Maximum	flow:	We	tried	assigning	flow	based	on	best-first	search,	but	we	showed	
that	the	algorithm	will	get	stuck	if	it	is	not	able	to	modify	the	flow!

• Algorithms	that	rely	on	repeatedly	making	optimal	local	decisions	to	
eventually	reach	an	optimal	global	solution	are	called	greedy	algorithms



Example:	Files	on	Tape

Before	any	of	us	were	born,	computers	used	to	exist	on	magnetic	tape.

Imagine	we	have	such	a	tape,	split	in	to	segments	we	will	call	“blocks”,	
where	each	block	contains	data	from	a	single	file.	Each	file	is	referred	to	
by	an	integer	index	!,	and	has	length	in	blocks	"[!].

To	read	file	%,	the	tape	head	needs	to	first	skip	all	of	the	files	before	%.	
Therefore,	the	cost of	accessing	file	% can	be	written	as	

&'() % =+"[!]
,

-./

1 1 1 2 2 3 3 3 4 4



Example:	Files	on	Tape

Assuming	all	files	are	equally	likely	to	be	accessed,	we	can	write	the	
expected	(equivalently,	average)	cost	of	accessing	file	k as

0 &'() = 1
2+&'()(!)

5

-./
= 1
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Example:	Files	on	Tape

Assuming	all	files	are	equally	likely	to	be	accessed,	we	can	write	the	
expected	(equivalently,	average)	cost	of	accessing	file	k as

0 &'() = 1
2+&'()(!)
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-./
= 1
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,
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,./

1 1 1 2 2 3 3 3 4 4

= 1
4 ⋅ 3 + 5 + 8 + 10 = 	264

0 &'() = 1
4 ⋅ &'()(1) + &'()(2) + &'()(3) + &'()(4)



What	order	should	we	keep	the	files	in?

We	can	modify	the	order	of	the	files	on	the	tape,	resulting	in	a	permutation	@
where	@(!) returns	the	index	of	the	file	in	the	!th block.	We	can	then	rewrite	the	
expected	(average)	cost	of	accessing	file	k as

0 &'()(@) = 1
2++"[@(!)]

,

-./

5

,./

Intuitively:	To	minimize	average	cost,	we	should	store	the	smallest	files	first,	
otherwise	we	will	need	to	unnecessarily	spend	time	skipping	the	large	files	to	read	
smaller	ones!

But	how	do	we	prove	that	this	is	the	optimal	strategy?

1 1 1 2 2 3 3 3 4 4
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0 &'() = 26
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4 = 23
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Greedy	Algorithm	for	Storing	Files

Input:	A	set	of	files	labeled	1…2 with	lengths	"[!]
Output:	An	ordering	of	the	files	on	the	tape

Repeat	until	all	files	are	on	the	tape:
1. Find	the	unwritten	file	with	minimum	length	(break	ties	arbitrarily)
2. Write	that	file	to	the	tape



Greedy	Algorithm	for	Storing	Files

Input:	A	set	of	files	labeled	1…2 with	lengths	"[!]
Output:	An	ordering	of	the	files	on	the	tape

Repeat	until	all	files	are	on	the	tape:
1. Find	the	unwritten	file	with	minimum	length	(break	ties	arbitrarily)
2. Write	that	file	to	the	tape

How	can	we	show	this	is	optimal?



Proof	of	optimality

Claim:	0 &'() @ is	minimized	when	" @ ! ≤ "[@ ! + 1 ] for	all	!.
Proof:	

Let	a = @ ! and	E = @(! + 1) and	suppose	" F > "[E] for	some	index	!.	
If	we	swap	the	files	F and	E on	the	tape,	then	the	cost	of	accessing	F increases	by	"[E] and	
the	cost	of	accessing	E decreases	by	"[F].	

Overall,	the	swap	changes	the	expected	cost	by	H I JH[K]
5 .	

This	change	represents	an	improvement	because	" E < "[F].	
Thus,	if	the	files	are	out	of	order,	we	can	decrease	expected	cost	by	swapping	pairs	to	put	
them	in	order.	

1 1 1 2 2 3 3 3 4 4
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Average	cost	for	example	above:	MNO
Average	cost	after	swapping	files	1	and	2:	/O 2 + 5 + 8 + 10 = MP

O
26
4 + 2 − 34 = 26 − 1

4 = 25
4



Proof	of	optimality

Claim:	0 &'() @ is	minimized	when	" @ ! ≤ "[@ ! + 1 ] for	all	!.
Proof:	

Let	a = @ ! and	E = @(! + 1) and	suppose	" F > "[E] for	some	index	!.	
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1 1 1 2 2 3 3 3 4 4



Wrap-up

Greedy	algorithms	repeatedly	apply	a	simple	rule	to	eventually	find	an	
optimal	solution

Inductive	Exchange	Arguments	are	strategies	for	proving	correctness	of	some	
greedy	algorithms

Next	Week:
Data	Compression	with	Huffman	Codes
Proof	strategies	for	greedy	algorithms

Inductive	exchange
Greedy-stays-ahead



Midterm	2	Review/Q&A



Topics
• Graph	Algorithms

• Reachability,	connectivity,	graph	traversal
• DFS	and	BFS
• Typology	of	edges	in	a	whatever-first-search	tree

• tree,	forward,	backward,	cross
• Post-ordering	of	nodes	in	a	traversal

• Topological	orderings/Directed	Acyclic	Graphs	(DAGs)
• Reverse	post-ordering	is	a	topological	ordering	iff the	graph	is	a	DAG!

• Shortest	paths
• Using	BFS/DFS	or	Dijkstra	(best-first-search)
• Single-source	vs.	all-pairs
• Betweenness centrality

• Minimum	Spanning	Trees
• Cut	property	and	Cycle	property
• Boruvka:	Add	all	safe	edges	across	each	cut,	then	recurse
• Prim:	Best	first	search:	Repeatedly	add	R’s	safe	edge	to	itself

• Network	Flow
• Max	flow/min	cut	duality
• Augmenting	Paths	and	the	residual	graph
• Ford-Fulkerson	algorithm
• Reduction	to	many	other	problems



Graph	Traversal
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Post-Ordering,	DAGs,	and	
Topological	Ordering



Post-Ordering

A	post-ordering of	a	graph	S = (T, V)
is	an	ordering	of	the	nodes	based	on	
“when”	DFS	from	each	node	finished.

To	get	a	post-order,	we	maintain	a	
global	clock	variable	that	is	initialized	
to	1.

Every	time	we	finish	calling	DFS	on	all	
of	a	node’s	neighbors,	we	set	its	post-
order	value	to	the	current	value	of	
clock,	then	increment	clock.

S = (T, V) is a graph
visited[W] =	0	for	all	W ∈ T
clock = 1

]^_ W :
visited[W] = 1
For a ∈ bc!dℎE'f((W):
If visited[a] = 0:
parent[a] = W
DFS(a)

post-visit(W)

post-visit(W):
set postorder[W] = clock
clock ← clock + 1

Recursive	DFS	with	post-ordering



Directed	Acyclic	Graph	(DAG)

• A	directed	graph	with	no	cycles
• Represent	precedence	relationships
• “this”	comes	before	“that”
• “this”	is	prior	to	“that”

A	topological	ordering of	a	directed	graph	
is	a	labeling	of	the	nodes	so	that	all	edges	
point	“forward”,	meaning	for	all	directed	
edges	 a-, ah , i > !

Key	point:	A	reverse	post-ordering	of	the	
nodes	in	a	DAG	is	a	topological	ordering!

aM aj

aOaP

a/

aN

ak

aM aj aO aPa/ aN ak



Topological	Ordering

Ordering	nodes	by	decreasing	post-order	gives	a	topological	ordering.

Example:

u c

ba

Vertex u a b c
Postorder 4 1 3 2

u cb a

4 3 2 1



Minimum	Spanning	Trees



Minimum	Spanning	Trees

A	spanning	tree is	a	set	of	edges	R ∈ V is	a	subgraph	of	a	graph	S =
(T, V) that	(i)	is	a	tree	and	(ii)	contains	all	of	the	nodes	a ∈ T.

A	minimum spanning	tree	for	a	connected,	weighted,	undirected	graph	
S = T, V, lm ,	where	lm ∈ ℝ is	a	weight	associated	with	each	edge	
c ∈ V,	is	a	spanning	tree	R with	minimum	weight	l(R):	

l R =+lm
�

m∈p



Borůvka’s Algorithm

• Borůvka:
• Let	R = ∅
• Repeat	until	R is	connected:

• Let	r/, … , r, be	the	connected	components	of	 T, R
• Let	c/, … , c, be	the	safe	edge	for	the	cuts	r/, … , rs
• Add	c/, … , c, to	R

• Correctness:	every	edge	we	add	is	safe



Borůvka’s Algorithm
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Borůvka’s Algorithm

1

1 1

1 1

1

1

1

6 12
5

14

3

8

10

15

9

7

Done!



Prim’s	Algorithm

• Prim	Informal
• Let	R = ∅
• Let	( be	some	arbitrary	node	and	_ = (
• Repeat	until	_ = T

• Find	the	cheapest	edge	c = W, a cut	by	_.		Add	c to	R and	
add	a to	_

• Correctness:	every	edge	we	add	is	safe



Prim’s	Algorithm



Network	Flow



Augmenting	Paths
• Given	a	network	S	 = 	 (T, V, (, ), & c ) and	a	flow	t,	an	
augmenting	path	u is	an	( → ) path	such	that	t(c) < &(c)
for	every	edge	c ∈ u

s

1

2

t

10

10

10 10

10 10

0

20

20

30

Adding	uniform	flow	
on	an	augmenting	
path	results	in	a	new	
valid	s-t	flow!



Residual	Graphs
• Original	edge:		c	 = W, a ∈ 	V.

• Flow t(c),	capacity	&(c)

• Residual	edge
• Allows	“undoing”	flow
• c = W, a and cw = a, W .
• Residual	capacity

• Residual	graph Sx = T, Vx
• Edges	with	positive	residual	capacity.
• Vt	 = 	 c ∶ 	t c < 	& c 	∪ 	 c{ ∶ 	& c > 	0 .

u vt(c)
&(c)

u v

& c − t(c)

t(c) cw

c



Augmenting	Paths	in	Residual	Graphs
• Let	Sx be	a	residual	graph
• Let	u be	an	augmenting	path	in	the	residual	graph
• Fact: t’	 = 	Augment(Sx, u) is	a	valid	flow

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else:      f(e) ¬ f(e) - b

return f

Note:	This	is	the	same	process	as	
the	recurrence	in	Erickson	10.3!



Ford-Fulkerson	Algorithm

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else:      f(e) ¬ f(e) - b

return f

FordFulkerson(G,s,t,{c(e)})
for e Î E: f(e) ¬ 0
Gf is the residual graph

while (there is an s-t path P in Gf)
f ¬ Augment(Gf,P)
update Gf

return f



Ford-Fulkerson	Algorithm
• Start	with	t c = 0 for	all	edges	c ∈ V
• Find	an	augmenting	path u in	the	residual	graph
• Repeat	until	you	get	stuck
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Ford-Fulkerson	Algorithm
• Start	with	t c = 0 for	all	edges	c ∈ V
• Find	an	augmenting	path u in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30 s

1

2

t

10

10

20

20

30

c ∈ V
cw ∉ V



Ford-Fulkerson	Algorithm
• Start	with	t c = 0 for	all	edges	c ∈ V
• Find	an	augmenting	path u in	the	residual	graph
• Repeat	until	you	get	stuck
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Ford-Fulkerson	Algorithm
• Start	with	t c = 0 for	all	edges	c ∈ V
• Find	an	augmenting	path u in	the	residual	graph
• Repeat	until	you	get	stuck
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Ford-Fulkerson	Algorithm
• Start	with	t c = 0 for	all	edges	c ∈ V
• Find	an	augmenting	path u in	the	residual	graph
• Repeat	until	you	get	stuck
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Ford-Fulkerson	Algorithm
• Start	with	t c = 0 for	all	edges	c ∈ V
• Find	an	augmenting	path u in	the	residual	graph
• Repeat	until	you	get	stuck
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Ford-Fulkerson	Algorithm
• Start	with	t c = 0 for	all	edges	c ∈ V
• Find	an	augmenting	path u in	the	residual	graph
• Repeat	until	you	get	stuck
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Ford-Fulkerson	Algorithm
• Start	with	t c = 0 for	all	edges	c ∈ V
• Find	an	augmenting	path u in	the	residual	graph
• Repeat	until	you	get	stuck
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Network	Flow	Summary
• The	Ford-Fulkerson	Algorithm	solves	maximum	s-t	flow	

• Running	time	� � ⋅ aF� t∗ in	networks	with	integer	capacities

• Strong	MaxFlow-MinCut Duality:	max	flow	=	min	cut
• The	value	of	the	maximum	s-t	flow	equals	the	capacity	of	the	
minimum	s-t	cut	

• If	t∗ is	a	maximum	s-t	flow,	then	the	set	of	nodes	reachable	from	s	
in	Sx∗ gives	a	minimum	cut

• Given	a	max-flow,	can	find	a	min-cut	in	time	� 2 +�

• Every	graph	with	integer	capacities	has	an	integer	
maximum	flow
• Ford-Fulkerson	will	return	an	integer	maximum	flow



More	questions?



Wrap-up

No	class	tomorrow!

Homework	5	due	tonight,	solutions	out	tomorrow	morning
• Get	in	touch	ASAP	(not	10PM)	if	you	need	more	time!

Midterm	2	released	Wednesday	8PM	and	due	Friday	8PM	Boston	time!


