
Lecture	19:	Data	Compression	
and	Huffman	Codes

Tim	LaRock
larock.t@northeastern.edu

bit.ly/cs3000syllabus

Business
Homework	5	grades	posted

• Request	regrades	on	GradeScope ASAP!

Midterm	2	approximately	halfway	graded
• Grades	should	be	out	by	Wednesday	night

Extra	Credit	Assignment	1	open	until	Sunday	night

Extra	Credit	Assignment	2	to	be	released	this	evening	and	due	Thursday	5PM
• Optional	Greedy	Algorithms	and	Information	Theory	assignment
• Points	will	be	added	to	your	2nd lowest	homework	grade

Final	Exam	to	be	released	Thursday	6PM	and	due	Monday	at	Midnight
• Exam	is	cumulative,	all	topics	fair	game
• Review	during	lecture	on	Thursday	– form	for	questions	will	go	out	tonight

This	Week

• Today:	Greedy	algorithms	+	proof	strategies
• Data	Compression,	Huffman	Codes,	Information	theory

• Tomorrow:	More	greedy	algorithms/info	theory
• Clustering;	community	detection	in	graphs/networks

• Wednesday:	Advanced	topics	and	course	wrap-up
• If	we	haven’t	talked	about	something	you	hoped	we	would,	feel	free	to	send	me	an	
email	and	I	may	be	able	to	improvise	a	brief	discussion!

• Thursday:	Final	Exam	Review

Last	time:	Files	on	Tape

We	can	modify	the	order	of	the	files	on	the	tape,	resulting	in	a	permutation	!
where	!(#) returns	the	index	of	the	file	in	the	#th block.	We	can	then	rewrite	the	
expected	(average)	cost	of	accessing	file	k as

% &'()(!) = 1
,--.[!(#)]

1

234

5

134

Intuitively:	To	minimize	average	cost,	we	should	store	the	smallest	files	first,	
otherwise	we	will	need	to	unnecessarily	spend	time	skipping	the	large	files	to	read	
smaller	ones!

But	how	do	we	prove	that	this	is	the	optimal	strategy?

1 1 1 2 2 3 3 3 4 4

2 2 4 4 1 1 1 3 3 3

% &'() = 26
4

% &'()(!) = 2 + 4 + 7 + 10
4 = 23

4

Last	time:	Files	on	Tape

Input:	A	set	of	files	labeled	1…, with	lengths	.[#]
Output:	An	ordering	of	the	files	on	the	tape

Repeat	until	all	files	are	on	the	tape:
1. Find	the	unwritten	file	with	minimum	length	(break	ties	arbitrarily)
2. Write	that	file	to	the	tape

How	can	we	show	this	is	optimal?

Last	time:	Files	on	Tape
Claim:	% &'() ! is	minimized	when	. ! # ≤ .[! # + 1] for	all	#.
Proof:	

Let	a = ! # and	@ = !(# + 1) and	suppose	. A > .[@] for	some	index	#.	
If	we	swap	the	files	A and	@ on	the	tape,	then	the	cost	of	accessing	A increases	by	.[@] and	
the	cost	of	accessing	@ decreases	by	.[A].	

Overall,	the	swap	changes	the	expected	cost	by	C D EC[F]5 .	

This	change	represents	an	improvement	because	. @ < .[A].	
Thus,	if	the	files	are	out	of	length-order,	we	can	decrease	expected	cost	by	swapping	pairs	
to	put	them	in	order.	

Key	Point:	If	we	had	some	other	potentially	optimal	solution	!∗,	we	can	transform	
it	into	the	optimal	solution	by	iteratively	swapping	files	that	are	out	of	length-order.

Data	Compression	and	Huffman	Codes

Data	Compression

• How	do	we	store	strings	of	text	compactly?

• A	binary	code is	a	mapping	from	Σ → 0,1 ∗

• Simplest	code:	assign	numbers	1,2, … , Σ to	each	
symbol,	map	to	binary	numbers	of	⌈logP Σ ⌉ bits

• Morse	Code:

Data	Compression

• Letters	have	uneven	frequencies!
• Want	to	use	short	encodings	for	frequent	letters,	long	
encodings	for	infrequent	leters

a b c d avg. len.
Frequency 1/2 1/4 1/8 1/8
Encoding	1 00 01 10 11 2.0
Encoding	2 0 10 110 111 1.75

Data	Compression

• Letters	have	uneven	frequencies!
• Want	to	use	short	encodings	for	frequent	letters,	long	
encodings	for	infrequent	leters

a b c d avg. len.
Frequency 1/2 1/4 1/8 1/8
Encoding	1 00 01 10 11 2.0
Encoding	2 0 10 110 111 1.75

1 ⋅ 12 + 2 ⋅
1
4 + 3

1
8 + 3

1
8

= 1
2 +

1
2 +

3
4 = 1.75

Data	Compression

• What	properties	would	a	good	code	have?

• Easy	to	encode	a	string

• The	encoding	is	short	on	average	(bits	per	letter	given	frequencies)

• Easy	to	decode	a	string?

Encode(KTS)	=	– ● – – ● ● ●

Decode(– ● – – ● ● ●)	=

≤ 4 bits	per	letter	(30	symbols	max!)

Prefix	Free	Codes

• Cannot	decode	if	there	are	ambiguities
• e.g.	enc(“Z”) is	a	prefix	of	enc(“\”)

• Prefix-Free	Code:
• A	binary	enc: 	Σ → 0,1 ∗ such	that																																				
for	every	_ ≠ a ∈ Σ,	enc _ is	not	a	prefix	of	enc a

• Any	fixed-length	code	is	prefix-free

Prefix	Free	Codes

• Can	represent	a	prefix-free	code	as	a	binary	tree
• Left	child	=	0
• Right	child	=	1

• Encode	by	going	up	the	tree	(or	using	a	table)
• d	a	b	→ 0	0	1		1		0	1	1

• Decode	by	going	down	the	tree
• 0	1	1	 0	0	0	 1		0	0	1	 0	1	0	 1		0	1	1	← beadcab

Huffman	Codes

• (An	algorithm	to	find)	an	optimal prefix-free	code

• optimal =	 minfghijkEighh	l	len m = ∑ o2�
2∈q ⋅ lenl #

• Note,	optimality	depends	on	what	you’re	compressing
• H	is	the	8th most	frequent	letter	in	English	(6.094%)	but	the	20th most	frequent	in	Italian	
(0.636%)

a b c d
Frequency 1/2 1/4 1/8 1/8
Encoding 0 10 110 111

Huffman	Codes

• First	Try:	split	letters	into	two	sets	of	roughly	equal	frequency	and	
recurse
• Balanced	binary	trees	should	have	low	depth

a b c d e
.32 .25 .20 .18 .05

Huffman	Codes

• First	Try:	split	letters	into	two	sets	of	roughly	equal	frequency	and	
recurse
• Balanced	binary	trees	should	have	low	depth

a b c d e
.32 .25 .20 .18 .05

0.5
0.5

Huffman	Codes

• First	Try:	split	letters	into	two	sets	of	roughly	equal	frequency	and	
recurse
• Balanced	binary	trees	should	have	low	depth

a b c d e
.32 .25 .20 .18 .05

0.5
0.5

2 ⋅ 0.32 + 0.25 + 0.18 + 3 ⋅ 0.20 + 0.05
= 2 ⋅ 0.75 + 3 ⋅ 0.25 = 2.25

Huffman	Codes

• First	Try:	split	letters	into	two	sets	of	roughly	equal	frequency	and	
recurse

first	try
len	=	2.25

a b c d e
.32 .25 .20 .18 .05

Huffman	Codes

• First	Try:	split	letters	into	two	sets	of	roughly	equal	frequency	and	
recurse

first	try
len	=	2.25

optimal
len	=	2.23

a b c d e
.32 .25 .20 .18 .05

Huffman	Codes

• First	Try:	split	letters	into	two	sets	of	roughly	equal	frequency	and	
recurse

first	try
len	=	2.25

optimal
len	=	2.23

a b c d e
.32 .25 .20 .18 .05

Huffman	Codes

• Huffman’s	Algorithm:	pair	up	the	two	letters	with	the	lowest	
frequency	and	recurse

a b c d e
.32 .25 .20 .18 .05

Huffman	Codes

• Huffman’s	Algorithm:	pair	up	the	two	letters	with	the	lowest	
frequency	and	recurse

• Theorem:	Huffman’s	Algorithm	produces	a	prefix-free	code	of	optimal	
length
• We’ll	prove	the	theorem	using	an	exchange	argument

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• (1)	In	an	optimal	prefix-free	code	(a	tree),	every	internal	node	
has	exactly	two	children

Huffman	Codes

• Theorem:	Huffman’s	Alg	produces	an	optimal	prefix-free	code
• (1)	In	an	optimal	prefix-free	code	(a	tree),	every	internal	node	
has	exactly	two	children

22

11
a b

c

Huffman	Codes

• Theorem:	Huffman’s	Alg	produces	an	optimal	prefix-free	code
• (1)	In	an	optimal	prefix-free	code	(a	tree),	every	internal	node	
has	exactly	two	children

Adding	another	internal	node	
anywhere	would	only	raise	the	
average	length!

22

11
a b

c

Huffman	Codes

• Theorem:	Huffman’s	Alg	produces	an	optimal	prefix-free	code
• (1)	In	an	optimal	prefix-free	code	(a	tree),	every	internal	node	
has	exactly	two	children

2

11

2

11

Adding	another	internal	node	
anywhere	would	only	raise	the	
average	length!

a b

c d

22

11
a b

c

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• (1)	In	an	optimal	prefix-free	code	(a	tree),	every	internal	node	
has	exactly	two	children

Adding	another	internal	node	
anywhere	would	only	raise	the	
average	length!

What	is	the	
implication	of	
removing	the	
internal	node?

22

11
a b

c
2

11

2

11
a b

c d

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• (1)	In	an	optimal	prefix-free	code	(a	tree),	every	internal	node	
has	exactly	two	children

22

11 11

Adding	another	internal	node	
anywhere	would	only	raise	the	
average	length!

c d

What	is	the	
implication	of	
removing	the	
internal	node?

a b

A	strictly	shorter	code!

22

11
a b

c
2

11

2

11
a b

c d

Huffman	Codes

• Theorem:	Huffman’s	Alg	produces	an	optimal	prefix-free	code
• (1)	In	an	optimal	prefix-free	code	(a	tree),	every	internal	node	
has	exactly	two	children

Adding	another	internal	node	
anywhere	would	only	raise	the	
average	length!

What	is	the	
implication	of	
removing	the	
internal	node?

A	strictly	shorter	code!

Implication:	If	a	code	tree	has	depth	r,	there	are	at	least	2	leaves	at	depth	r that	are	siblings!

22

11
a b

c
2

11

2

11
a b

c d

22

11 11
c da b

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• (2)	If	_, a have	the	lowest	frequency,	then	there	is	an	optimal	
code	where	_, a are	siblings	and	are	at	the	bottom	of	the	tree

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• (2)	If	_, a have	the	lowest	frequency,	then	there	is	an	optimal	
code	where	_, a are	siblings	and	are	at	the	bottom	of	the	tree
Suppose	someone	gave	you	the	optimal	tree,	but	with	no	labels.	

Ex:	Σ = A, @, &, r, s , with	oF > oD > ot > ou > ov

How	should	you	label	the	leaves?

Given	what	we	proved	in	
(1),	the	two	least	frequent	
symbols	will	be	siblings	at	

the	lowest	depth!

By	definition,	the	highest	
frequency	symbols	should	
be	on	the	highest	leaves!

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• (2)	If	_, a have	the	lowest	frequency,	then	there	is	an	optimal	
code	where	_, a are	siblings	and	are	at	the	bottom	of	the	tree
Suppose	someone	gave	you	the	optimal	tree,	but	with	no	labels.	

Ex:	Σ = A, @, &, r, s , with	oF > oD > ot > ou > ov

How	should	you	label	the	leaves?

Given	what	we	proved	in	
(1),	the	two	least	frequent	
symbols	will	be	siblings	at	

the	lowest	depth!

By	definition,	the	highest	
frequency	symbols	should	
be	on	the	highest	leaves!

abc

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• (2)	If	_, a have	the	lowest	frequency,	then	there	is	an	optimal	
code	where	_, a are	siblings	and	are	at	the	bottom	of	the	tree
Suppose	someone	gave	you	the	optimal	tree,	but	with	no	labels.	

Ex:	Σ = A, @, &, r, s , with	oF > oD > ot > ou > ov

How	should	you	label	the	leaves?

Given	what	we	proved	in	
(1),	the	two	least	frequent	
symbols	will	be	siblings	at	

the	lowest	depth!

By	definition,	the	highest	
frequency	symbols	should	
be	on	the	highest	leaves!

abc

de

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• (2)	If	_, a have	the	lowest	frequency,	then	there	is	an	optimal	
code	where	_, a are	siblings	and	are	at	the	bottom	of	the	tree
Suppose	someone	gave	you	the	optimal	tree,	but	with	no	labels.	

Ex:	Σ = A, @, &, r, s , with	oF > oD > ot > ou > ov

How	should	you	label	the	leaves?

Given	what	we	proved	in	
(1),	the	two	least	frequent	
symbols	will	be	siblings	at	

the	lowest	depth!

By	definition,	the	highest	
frequency	symbols	should	
be	on	the	highest	leaves!

abc

de

Implication:	The	first	step	of	Huffman’s	
Algorithm	is	towards	an	optimal	code!

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• Proof	by	Induction	on	the	Number	of	Letters	in	Σ:
• Base	case	(Σ = 2):	rather	obvious

Inductive	Step:	If	Huffman’s	algorithm	is	optimal	for	 Σ = w − 1,	
then	it	is	optimal	for	 Σ = w.

Suppose	we	have	frequencies	o4 ≥ oP ≥ ⋯ ≥ o1E4 ≥ o1.	

Based	on	Huffman’s	alg and	what	we	proved	in	(1)	and	(2),	we	
merge	o1E4 and	o1 to	get	a	new	symbol	{.	Now	we	have

Σ| = {1, 2,⋯ , w − 2,{},	where	o� = o1E4 + o1

Now	 Σ| = w − 1,	which	we	have	assumed	to	be	optimal	by	the	
inductive	hypothesis!

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• Proof	by	Induction	on	the	Number	of	Letters	in	Σ:
• Base	case	(Σ = 2):	rather	obvious

Inductive	Step:	If	Huffman’s	algorithm	is	optimal	for	 Σ = w − 1,	
then	it	is	optimal	for	 Σ = w.

Suppose	we	have	frequencies	o4 ≥ oP ≥ ⋯ ≥ o1E4 ≥ o1.	

Based	on	Huffman’s	alg and	what	we	proved	in	(1)	and	(2),	we	
merge	o1E4 and	o1 to	get	a	new	symbol	{.	Now	we	have

Σ| = {1, 2,⋯ , w − 2,{},	where	o� = o1E4 + o1

Now	 Σ| = w − 1,	which	we	have	assumed	to	be	optimal	by	the	
inductive	hypothesis!

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• Proof	by	Induction	on	the	Number	of	Letters	in	Σ:
• Base	case	(Σ = 2):	rather	obvious

Inductive	Step:	If	Huffman’s	algorithm	is	optimal	for	 Σ = w − 1,	
then	it	is	optimal	for	 Σ = w.

Suppose	we	have	frequencies	o4 ≥ oP ≥ ⋯ ≥ o1E4 ≥ o1.	

Based	on	Huffman’s	alg and	what	we	proved	in	(1)	and	(2),	we	
merge	o1E4 and	o1 to	get	a	new	symbol	{.	Now	we	have

Σ| = {1, 2,⋯ , w − 2,{},	where	o� = o1E4 + o1

Now	 Σ| = w − 1,	which	we	have	assumed	to	be	optimal	by	the	
inductive	hypothesis!

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• Proof	by	Induction	on	the	Number	of	Letters	in	Σ:
• Base	case	(Σ = 2):	rather	obvious

Inductive	Step:	If	Huffman’s	algorithm	is	optimal	for	 Σ = w − 1,	
then	it	is	optimal	for	 Σ = w.

Suppose	we	have	frequencies	o4 ≥ oP ≥ ⋯ ≥ o1E4 ≥ o1.	

Based	on	Huffman’s	alg and	what	we	proved	in	(1)	and	(2),	we	
merge	o1E4 and	o1 to	get	a	new	symbol	{.	Now	we	have

Σ| = {1, 2,⋯ , w − 2,{},	where	o� = o1E4 + o1

Now	 Σ| = w − 1,	which	we	have	assumed	to	be	optimal	by	the	
inductive	hypothesis!

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• Proof	by	Induction	on	the	Number	of	Letters	in	Σ:
• Base	case	(Σ = 2):	rather	obvious

Inductive	Step:	If	Huffman’s	algorithm	is	optimal	for	 Σ = w − 1,	
then	it	is	optimal	for	 Σ = w.

Suppose	we	have	frequencies	o4 ≥ oP ≥ ⋯ ≥ o1E4 ≥ o1.	

Based	on	Huffman’s	alg and	what	we	proved	in	(1)	and	(2),	we	
merge	o1E4 and	o1 to	get	a	new	symbol	{.	Now	we	have

Σ| = {1, 2,⋯ , w − 2,{},	where	o� = o1E4 + o1

Now	 Σ| = w − 1,	which	we	have	assumed	to	be	optimal	by	the	
inductive	hypothesis!

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code
• Proof	by	Induction	on	the	Number	of	Letters	in	Σ:
• Base	case	(Σ = 2):	rather	obvious

Inductive	Step:	If	Huffman’s	algorithm	is	optimal	for	 Σ = w − 1,	
then	it	is	optimal	for	 Σ = w.

Suppose	we	have	frequencies	o4 ≥ oP ≥ ⋯ ≥ o1E4 ≥ o1.	

Based	on	Huffman’s	alg and	what	we	proved	in	(1)	and	(2),	we	
merge	o1E4 and	o1 to	get	a	new	symbol	{.	Now	we	have

Σ| = {1, 2,⋯ , w − 2,{},	where	o� = o1E4 + o1

Now	 Σ| = w − 1,	which	is	optimal	by	the	inductive	hypothesis.	

Huffman	Codes

• Theorem:	Huffman’s	Alg produces	an	optimal	prefix-free	code

We	showed	that…

1) In	an	optimal	prefix-free	code	tree,	every	internal	node	has	
exactly	two	children	

2) If	symbols	_, a have	the	lowest	frequency,	then	there	is	an	
optimal	code	where	_, a are	siblings	and	are	at	the	bottom	
of	the	tree

3) Every	Huffman	code	satisfies	these	two	properties	by	
definition.	Therefore,	a	code	produced	by	Huffman’s	
algorithm	is	an	optimal	prefix-free	code.	We	proved	this	by	
induction	on	the	number	of	symbols.

• Take	the	Dickens	novel	A	Tale	of	Two	Cities
• File	size	is	799,940	bytes

• Build	a	Huffman	code	and	compress

• File	size	is	now	439,688	bytes

An	Experiment

Raw Huffman
Size 799,940 439,688

Huffman	Codes

• Huffman’s	Algorithm:	pair	up	the	two	letters	with	the	lowest	
frequency	and	recurse

• Theorem:	Huffman’s	Algorithm	produces	a	prefix-free	code	of	optimal	
length

• In	what	sense	is	this	code	really	optimal?		(Bonus	material…will	not	
test	you	on	this)

Length	of	Huffman	Codes

• What	can	we	say	about	Huffman	code	length?
• Suppose	o2 = 2EℓÅ for	every	# ∈ Σ
• Then,	lenl # = ℓ2 for	the	optimal	Huffman	code

Letter a b c d
Frequency 2E4 2EP 2EÇ 2EÇ

Code 0 01 110 111
Length 1 2 3 3

Length	of	Huffman	Codes

• What	can	we	say	about	Huffman	code	length?
• Suppose	o2 = 2EℓÅ for	every	# ∈ Σ
• Then,	lenl # = ℓ2 for	the	optimal	Huffman	code
• Length	of	the	code	is	the	sum	of	2EℓÅ ⋅ ℓ2 for	all	#

Letter a b c d
Frequency 2E4 2EP 2EÇ 2EÇ

Code 0 01 110 111
Length 1 2 3 3

Length	of	Huffman	Codes

• What	can	we	say	about	Huffman	code	length?
• Suppose	o2 = 2EℓÅ for	every	# ∈ Σ
• Then,	lenl # = ℓ2 for	the	optimal	Huffman	code
• Length	of	the	code	is	the	sum	of	2EℓÅ ⋅ ℓ2 for	all	#
• len m = ∑ o2 ⋅ logP 4 ÉÅÑ�

2∈q
• logP o2 = −ℓ2
• logP 4

ÉÅ
= −ℓ2

Letter a b c d
Frequency 2E4 2EP 2EÇ 2EÇ

Code 0 01 110 111
Length 1 2 3 3

Entropy

• Given	a	set	of	frequencies	(aka	a	probability	distribution)	the	entropy is

• Entropy	is	a	“measure	of	randomness”
• Entropy	was	introduced	by	Shannon	in	1948	and	is	the	foundational	
concept	in:
• Data	compression
• Error	correction	(communicating	over	noisy	channels)
• Security	(passwords	and	cryptography)	

� o =-o2 ⋅ logP 1 o2Ñ
�

2

Entropy

• Given	a	set	of	frequencies	(aka	a	probability	distribution)	the	entropy is

• Entropy	is	a	“measure	of	randomness”
• Entropy	was	introduced	by	Shannon	in	1948	and	is	the	foundational	
concept	in:
• Data	compression
• Error	correction	(communicating	over	noisy	channels)
• Security	(passwords	and	cryptography)	

� o =-o2 ⋅ logP 1 o2Ñ
�

2

Entropy	of	Passwords

• Your	password	is	a	specific	string,	so	oÜ�u = 1.0

• To	talk	about	security	of	passwords,	we	have	to	model	them	as	
random
• Random	16	letter	string:	� = 	16 ⋅ logP 26 ≈ 75.2
• Random	IMDb	movie:	� =	 logP 1764727 ≈ 20.7
• Your	favorite	IMDb	movie:	� ≪ 20.7

• Entropy	measures	how	difficult	passwords	are	to	guess	“on	average”

Entropy	of	Passwords

Entropy	and	Compression

• Given	a	set	of	frequencies	(probability	distribution)	the	entropy is

• Suppose	that	we	generate	string	\ by	choosing	, random	letters	
independently	with	frequencies	o
• Any	compression	scheme	requires	at	least	� o bits-per-letter	to	
store	\ (as	, → ∞)
• Huffman	codes	are	truly	optimal!

� o =-o2 ⋅ logP 1 o2Ñ
�

2

But	Wait!

• Take	the	Dickens	novel	A	Tale	of	Two	Cities
• File	size	is	799,940	bytes

• Build	a	Huffman	code	and	compress

• File	size	is	now	439,688	bytes
• But	we	can	do	better! Raw Huffman gzip bzip2

Size 799,940 439,688 301,295 220,156

What	do	the	frequencies	represent?

• Real	data	(e.g.	natural	language,	music,	images)	have	patterns	between	
letters
• U	becomes	a	lot	more	common	after	a	Q

• Possible	approach:	model	pairs	of	letters
• Build	a	Huffman	code	for	pairs-of-letters
• Improves	compression	ratio,	but	the	tree	gets	bigger
• Can	only	model	certain	types	of	patterns

• Zip	is	based	on	an	algorithm	called	LZW	that	tries	to	identify	patterns	based	
on	the	data

Entropy	and	Compression

• Given	a	set	of	frequencies	(probability	distribution)	the	entropy is

• Suppose	that	we	generate	string	\ by	choosing	, random	letters	
independently	with	frequencies	o
• Any	compression	scheme	requires	at	least	� o bits-per-letter	to	
store	\
• Huffman	codes	are	truly	optimal	if	and	only	if	there	is	no	relationship	
between	different	letters!

� o =-o2 ⋅ logP 1 o2Ñ
�

2

Wrap-up

Reading	and	Extra	Credit	Assignment:	Will	send	out	an	announcement	
this	evening

Tomorrow:	Greedy	algorithm	for	clustering	and	an	application

Wednesday:	Advanced	topics	and	course	wrap	(let	me	know	if	you	
want	to	hear	about	something	in	particular!)

Thursday:	Final	exam	review

