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Business

Extra	Credit	Assignments	1	&	2	are	open

Midterm	grades	on	track	to	go	out	tomorrow	night

Final	exam	review	questions	form	sent	out	last	night



This	Week

• Today:	Greedy	algorithm	for	clustering

• Tomorrow:	Advanced	topics	and	course	wrap-up

• Thursday:	Final	Exam	Review



Clustering

Imagine	you	have	a	set	of	objects,	represented	by	points	in	a	space
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Clustering

The	goal	is	to	find	clusters such	that	two	objects	who	are	in	the	same	cluster	
are	in	some	sense	“similar”	to	each	other
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Clusters	may	represent	similarity	in	how	a	plant	looks	
(e.g.	green	vs.	not	green)	or	role	in	the	ecosystem

Clusters	may	represent	movie	genre	(drama,	comedy,	
documentary)	or	medium	(animation,	live	action)



Clustering

Clustering	is	extremely	important in	science	and	industry
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Anything	that	has	to	do	with	“big	data”	almost	certainly	
involves	some	kind	of	clustering

• Scientists	use	clustering	to	find	similarity	in	noisy	data
• Clustering	genes to	find	functional	similarities
• Clustering	brain	scans (or	other	health	data)	to	

understand	differences	between	people	with/without	
certain	conditions

• Clustering	organisms to	understand	evolution

• Netflix	recommends	what	to	watch	next	by	clustering	with	
what	you	have	watched	previously
• Similar	with	Amazon,	your	local	grocery	store	chain,	or	

any	other	retailer!



Clustering

We	will	study	two	kinds	of	clustering
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General	clustering Clustering	in	graphs	
(also	known	as	community	detection)
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You	are	given	a	set	of	" objects	# = {&', &),⋯ , &+} and	a	
point	in	space	- = {.', .),⋯.+} for	each	object	and	an	
integer	/,	representing	the	number	of	clusters

You	are	also	given	a	distance	(or	similarity) function
0123 .', .) 	that	takes	two	points	in	space	and	returns	a	
real-valued	distance	between	them

• Distance	should	be	symmetric,	meaning	
0123 .5, .6 = 0123(.6, .5) for	all	1, 9

• Distance	should	be	nonzero	if	&5 ≠ &6

The	goal	is	to	find	/ clusters in	the	data,	typically	
corresponding	to	points	that	are	closer	to	each	other	
than	any	other	points
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Clustering

Idea:	Construct	a	disconnected	graph	by	“greedily”	connecting	the	closest	
points	first	until	all	points	have	a	cluster!
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Begin	with	all	points	unassigned.	Fill	a	priority	queue	Q	
with	pairs	of	points	(1, 9) with	values	0123 .5, .6

While	there	are	points	without	any	assignment,	pull	the	
next	smallest	distance	pair	(1, 9) and…

1. If	neither	of	(1, 9) are	assigned	and	there	are	
fewer	than	/ clusters,	connect	them	and	put	
them	in	their	own	cluster

2. If	neither	of	 1, 9 are	assigned	and	there	are	
already	k	clusters,	do	nothing

3. If	one	of	1 or	9 is	assigned,	connect	them	and	
assign	them	to	the	same	cluster

4. If	both	1 and	9 are	assigned,	merge	their	clusters
5. If	1 and	9 are	in	the	same	cluster,	do	nothing
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We	found	clusters!
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We	found	clusters!

Does	this	algorithm	or	its	output	remind	us	of	anything?
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Idea:	Construct	a	disconnected	graph	by	“greedily”	connecting	the	closest	
points	first	until	all	points	have	a	cluster!
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We	found	clusters!

Does	this	algorithm	or	its	output	remind	us	of	anything?
We	found	a	subgraph	of	a	minimum	spanning	tree!



Clustering

We	can	modify	Kruskal’s algorithm	for	finding	a	minimum	spanning	tree

⋅ ⋅⋅⋅⋅⋅⋅

⋅ ⋅⋅ ⋅⋅ ⋅

⋅ ⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅

We	found	clusters!

Kruskal’s	MST	Algorithm

Start	with	< = ∅
For	each	edge	(1, 9) in	ascending	order	of	weight:

• If	adding	(1, 9) would	decrease	the	number	of	
connected	components	in	the	graph,	add	(1, 9) to	<

We	just	need	to	stop	the	algorithm	when	we	have	/
connected	components,	which	are	our	clusters!

Equivalently,	we	could	compute	the	whole	MST	using	any	
algorithm,	then	remove	the	/ − 1most	expensive	edges!	

So	we	can	reduce	the	problem	of	finding	a	maximum	spacing	
clustering	to	finding	an	MST!
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Clustering

Claim:	The	components	@', @),⋯@A formed	by	deleting	the	/ − 1most	expensive	edges	of	
the	minimum	spanning	tree	< constitute	a	k-clustering	of	maximum	spacing.

Let	@ denote	the	clustering	found	by	the	procedure	
above.

The	spacing	of	@ is	the	weight	of	the	 / − 1 BC most	
expensive	edge	in	<.	Denote	this	weight	0∗.

Consider	some	other	valid	k-clustering	@′.	We	need	to	
show	that	the	spacing	of	@′ is	at	most	0∗.

Since	@ and	@′ are	not	the	same,	one	of	our	clusters	@F is	
not	a	subset	of	any	of	the	/ sets	in	@′.	This	means	there	
must	be	points	.5, .6 ∈ @F that	belong	to	difference	
clusters	in	@′,	for	example	.5 ∈ @B′ and	.6 ∈ @C′.
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above.

The	spacing	of	@ is	the	weight	of	the	 / − 1 BC most	
expensive	edge	in	<.	Denote	this	weight	0∗.

Consider	some	other	valid	k-clustering	@′.	We	need	to	
show	that	the	spacing	of	@′ is	at	most	0∗.

Since	@ and	@′ are	not	the	same,	one	of	our	clusters	@F is	
not	a	subset	of	any	of	the	/ sets	in	@′.	This	means	there	
must	be	points	.5, .6 ∈ @F that	belong	to	difference	
clusters	in	@′,	for	example	.5 ∈ @B′ and	.6 ∈ @C′.

⋅ ⋅⋅⋅⋅⋅⋅

⋅ ⋅⋅ ⋅⋅ ⋅

⋅ ⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅

0∗ is	the	maximum	weight	
on	these	edges.	
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Clustering

Claim:	The	components	@', @),⋯@A formed	by	deleting	the	/ − 1most	expensive	edges	of	
the	minimum	spanning	tree	< constitute	a	k-clustering	of	maximum	spacing.

Let	@ denote	the	clustering	found	by	the	procedure	
above.

The	spacing	of	@ is	the	weight	of	the	 / − 1 BC most	
expensive	edge	in	<.	Denote	this	weight	0∗.

Consider	some	other	valid	k-clustering	@′.	We	need	to	
show	that	the	spacing	of	@′ is	at	most	0∗.

Since	@ and	@′ are	not	the	same,	one	of	our	clusters	@F is	
not	a	subset	of	any	of	the	/ sets	in	@′.	This	means	there	
must	be	points	.5, .6 ∈ @F that	belong	to	difference	
clusters	in	@′,	for	example	.5 ∈ @B′ and	.6 ∈ @C′.

Since	our	MST	algorithm	included	the	edge	
from	. to	.′,	it	must	have	had	weight	less	than	
0∗.	Since	. and	.′ belong	to	different	clusters	
in	@′,	its	spacing	must	be	at	most	0∗!



Clustering

Claim:	The	components	@', @),⋯@A formed	by	deleting	the	/ − 1most	expensive	edges	of	
the	minimum	spanning	tree	< constitute	a	k-clustering	of	maximum	spacing.

Let	@ denote	the	clustering	found	by	the	procedure	
above.

The	spacing	of	@ is	the	weight	of	the	 / − 1 BC most	
expensive	edge	in	<.	Denote	this	weight	0∗.

Consider	some	other	valid	k-clustering	@′.	We	need	to	
show	that	the	spacing	of	@′ is	at	most	0∗.

Since	@ and	@′ are	not	the	same,	one	of	our	clusters	@F is	
not	a	subset	of	any	of	the	/ sets	in	@′.	This	means	there	
must	be	points	.5, .6 ∈ @F that	belong	to	difference	
clusters	in	@′,	for	example	.5 ∈ @B′ and	.6 ∈ @C′.

Since	our	MST	algorithm	included	the	edge	from	
. to	.′,	it	must	have	had	weight	at	most	0∗.	

Since	. and	.′ belong	to	different	clusters	in	@′,	
its	spacing	must	be	at	most	0∗!	Proof	complete.



Clustering

We	will	study	two	kinds	of	clustering
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General	clustering Clustering	in	graphs	
(also	known	as	community	detection)
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We	will	study	two	kinds	of	clustering
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General	clustering Clustering	in	graphs	
(also	known	as	community	detection)

Can	we	apply	the	same	techniques	for	clustering	in	graphs?



Next	Time:	Clustering	in	Graphs

Clustering	in	graphs	
(also	known	as	community	detection)

Given	a	graph,	we	want	to	partition	the	nodes	in	to	
clusters or	communities for	some	purpose

• Detecting	literal	communities	in	social	networks
• Detecting	functionally	similar	genes	in	networks	

of	gene	interactions
• Detecting	functional	units	in	brain	networks
• Detecting	suspicious	actors	in	financial	

transaction	networks

If	we	have	a	weighted	graph,	we	can	obviously	apply	the	
generic	clustering	approach	where	0123(1, 9) is	the	
weighted	shortest	path	(or	other	distance	function)	
between	nodes	1 and	9.

However,	graphs	already	encode	structure	directly,	so	
why	not	use	it?



Next	Time:	Clustering	in	Graphs

Clustering	in	graphs	
(also	known	as	community	detection)

There	are	approximately	one	bajillion	different	ways	to	
partition	graphs	for	this	task

• Subfield	of	data	mining/network	science	called	
“community	detection”.

Some	techniques	rely	purely	on	structural	information	
(e.g.	the	connections	in	the	graph).	

• We	will	focus	on	techniques	like	these	tomorrow

Other	techniques	incorporate	domain-specific
information	when	partitioning	the	nodes.	

• These	are	too	specific	for	this	course,	but	
generally	combine	the	generic	clustering	
technique	with	some	version	of	structural	
partitioning



Wrap-up

Extra	Credit	Assignments	are	open

Tomorrow:	Clustering	in	graphs	+	other	advanced	topics

Thursday:	Final	Exam	Review	(form	for	questions	sent	out	last	night)

Final	Exam:	Released	Thursday	night,	due	Monday	night


