Lecture 20: Clustering

Tim LaRock

larock.t@northeastern.edu

bit.ly/cs3000syllabus

Extra Credit Assignments 1 & 2 are open

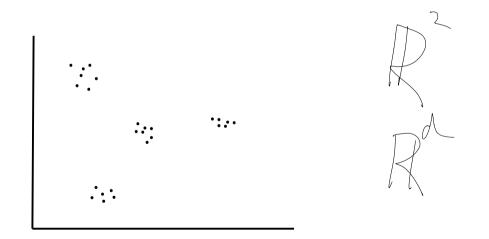
Midterm grades on track to go out tomorrow night

Final exam review questions form sent out last night

This Week

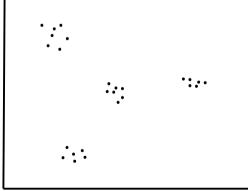
- Today: Greedy algorithm for clustering
- Tomorrow: Advanced topics and course wrap-up
- Thursday: Final Exam Review

Imagine you have a set of objects, represented by points in a space

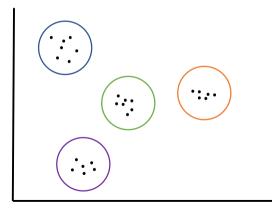


Imagine you have a set of objects, represented by points in a space

Imagine you have a set of objects, represented by points in a space



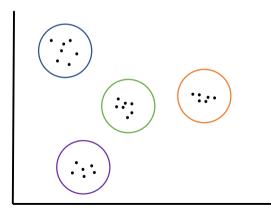
The goal is to find *clusters* such that two objects who are in the same cluster are in some sense "similar" to each other



Clusters may represent similarity in how a plant looks (e.g. green vs. not green) or role in the ecosystem

Clusters may represent movie genre (drama, comedy, documentary) or medium (animation, live action)

Clustering is extremely important in science and industry



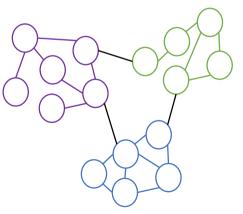
Anything that has to do with "big data" almost certainly involves some kind of clustering

- Scientists use clustering to find similarity in noisy data
 - Clustering genes to find functional similarities
 - Clustering *brain scans* (or other health data) to understand differences between people with/without certain conditions
 - Clustering *organisms* to understand evolution
- Netflix recommends what to watch next by clustering with what you have watched previously
 - Similar with Amazon, your local grocery store chain, or any other retailer!

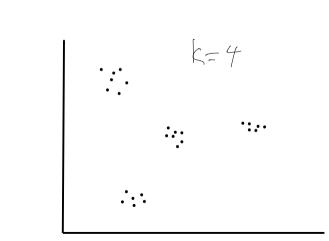
We will study two kinds of clustering

General clustering

Clustering in graphs (also known as *community detection*)

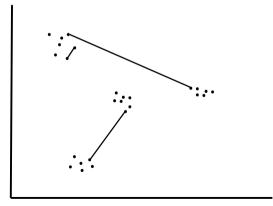


Imagine you have a set of objects, represented by points in a space



You are given a set of *n* objects $U = \{x_1, x_2, \dots, x_n\}$ and a point in space $P = \{p_1, p_2, \dots, p_n\}$ for each object and an integer *k*, representing the number of clusters

Imagine you have a set of objects, represented by points in a space

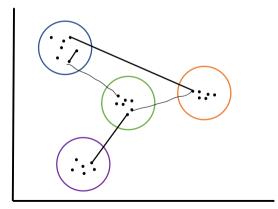


You are given a set of *n* objects $U = \{x_1, x_2, \dots, x_n\}$ and a point in space $P = \{p_1, p_2, \dots, p_n\}$ for each object and an integer *k*, representing the number of clusters

You are also given a *distance* (or *similarity*) *function* $dist(p_1, p_2)$ that takes two points in space and returns a real-valued distance between them

- Distance should be symmetric, meaning $dist(p_i, p_j) = dist(p_j, p_i)$ for all i, j
- Distance should be nonzero if $x_i \neq x_j$

Imagine you have a set of objects, represented by points in a space



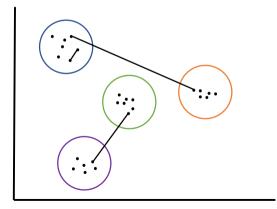
You are given a set of *n* objects $U = \{x_1, x_2, \dots, x_n\}$ and a point in space $P = \{p_1, p_2, \dots, p_n\}$ for each object and an integer *k*, representing the number of clusters

You are also given a *distance* (or *similarity*) *function* $dist(p_1, p_2)$ that takes two points in space and returns a real-valued distance between them

- Distance should be symmetric, meaning $dist(p_i, p_j) = dist(p_j, p_i)$ for all i, j
- Distance should be nonzero if $x_i \neq x_i$

Goal: Find k clusters *of maximum spacing*, meaning a clustering where the minimum distance between points in different clusters (spacing) is as large as possible

Idea: Construct a disconnected graph by "greedily" connecting the closest points first until all points have a cluster!



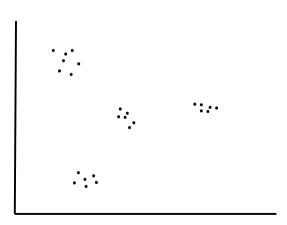
You are given a set of *n* objects $U = \{x_1, x_2, \dots, x_n\}$ and a point in space $P = \{p_1, p_2, \dots, p_n\}$ for each object and an integer *k*, representing the number of clusters

You are also given a *distance* (or *similarity*) *function* $dist(p_1, p_2)$ that takes two points in space and returns a real-valued distance between them

- Distance should be symmetric, meaning $dist(p_i, p_j) = dist(p_j, p_i)$ for all i, j
- Distance should be nonzero if $x_i \neq x_j$

Goal: Find k clusters *of maximum spacing*, meaning a clustering where the minimum distance between points in different clusters (spacing) is as large as possible

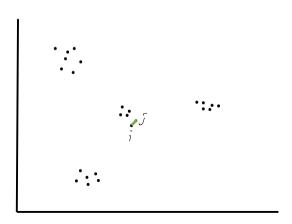
Idea: Construct a disconnected graph by "greedily" connecting the closest points first until all points have a cluster!



Begin with all points unassigned. Fill a priority queue Q with pairs of points (i, j) with values $dist(p_i, p_j)$

- If neither of (*i*, *j*) are assigned and there are fewer than *k* clusters, connect them and put them in their own cluster
- 2. If neither of (i, j) are assigned and there are already k clusters, do nothing
- 3. If one of *i* or *j* is assigned, connect them and assign them to the same cluster
- 4. If both *i* and *j* are assigned, merge their clusters
- 5. If *i* and *j* are in the same cluster, do nothing

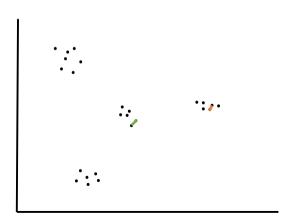
Idea: Construct a disconnected graph by "greedily" connecting the closest points first until all points have a cluster!



Begin with all points unassigned. Fill a priority queue Q with pairs of points (i, j) with values $dist(p_i, p_j)$

- If neither of (*i*, *j*) are assigned and there are fewer than *k* clusters, connect them and put them in their own cluster
- 2. If neither of (i, j) are assigned and there are already k clusters, do nothing
- 3. If one of *i* or *j* is assigned, connect them and assign them to the same cluster
- 4. If both *i* and *j* are assigned, merge their clusters
- 5. If *i* and *j* are in the same cluster, do nothing

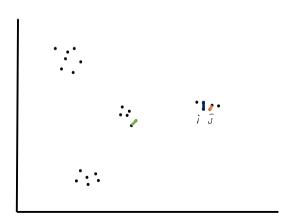
Idea: Construct a disconnected graph by "greedily" connecting the closest points first until all points have a cluster!



Begin with all points unassigned. Fill a priority queue Q with pairs of points (i, j) with values $dist(p_i, p_j)$

- If neither of (*i*, *j*) are assigned and there are fewer than *k* clusters, connect them and put them in their own cluster
- 2. If neither of (i, j) are assigned and there are already k clusters, do nothing
- 3. If one of *i* or *j* is assigned, connect them and assign them to the same cluster
- 4. If both *i* and *j* are assigned, merge their clusters
- 5. If *i* and *j* are in the same cluster, do nothing

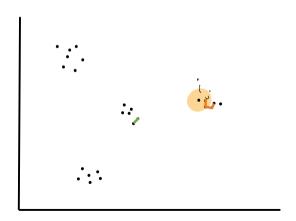
Idea: Construct a disconnected graph by "greedily" connecting the closest points first until all points have a cluster!



Begin with all points unassigned. Fill a priority queue Q with pairs of points (i, j) with values $dist(p_i, p_j)$

- If neither of (*i*, *j*) are assigned and there are fewer than *k* clusters, connect them and put them in their own cluster
- 2. If neither of (i, j) are assigned and there are already k clusters, do nothing
- 3. If one of *i* or *j* is assigned, connect them and assign them to the same cluster
- 4. If both *i* and *j* are assigned, merge their clusters
- 5. If *i* and *j* are in the same cluster, do nothing

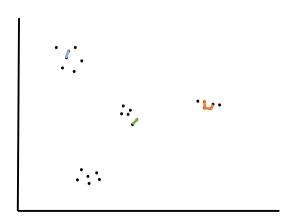
Idea: Construct a disconnected graph by "greedily" connecting the closest points first until all points have a cluster!



Begin with all points unassigned. Fill a priority queue Q with pairs of points (i, j) with values $dist(p_i, p_j)$

- If neither of (*i*, *j*) are assigned and there are fewer than *k* clusters, connect them and put them in their own cluster
- 2. If neither of (i, j) are assigned and there are already k clusters, do nothing
- 3. If one of *i* or *j* is assigned, connect them and assign them to the same cluster
- 4. If both *i* and *j* are assigned, merge their clusters
- 5. If *i* and *j* are in the same cluster, do nothing

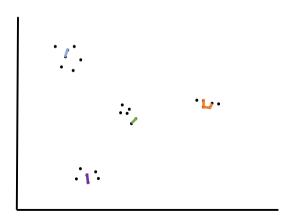
Idea: Construct a disconnected graph by "greedily" connecting the closest points first until all points have a cluster!



Begin with all points unassigned. Fill a priority queue Q with pairs of points (i, j) with values $dist(p_i, p_j)$

- If neither of (*i*, *j*) are assigned and there are fewer than *k* clusters, connect them and put them in their own cluster
- 2. If neither of (i, j) are assigned and there are already k clusters, do nothing
- 3. If one of *i* or *j* is assigned, connect them and assign them to the same cluster
- 4. If both *i* and *j* are assigned, merge their clusters
- 5. If *i* and *j* are in the same cluster, do nothing

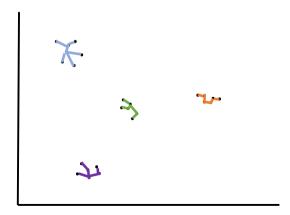
Idea: Construct a disconnected graph by "greedily" connecting the closest points first until all points have a cluster!



Begin with all points unassigned. Fill a priority queue Q with pairs of points (i, j) with values $dist(p_i, p_j)$

- If neither of (*i*, *j*) are assigned and there are fewer than *k* clusters, connect them and put them in their own cluster
- 2. If neither of (i, j) are assigned and there are already k clusters, do nothing
- 3. If one of *i* or *j* is assigned, connect them and assign them to the same cluster
- 4. If both *i* and *j* are assigned, merge their clusters
- 5. If *i* and *j* are in the same cluster, do nothing

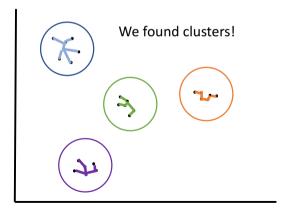
Idea: Construct a disconnected graph by "greedily" connecting the closest points first until all points have a cluster!



Begin with all points unassigned. Fill a priority queue Q with pairs of points (i, j) with values $dist(p_i, p_j)$

- If neither of (*i*, *j*) are assigned and there are fewer than *k* clusters, connect them and put them in their own cluster
- 2. If neither of (i, j) are assigned and there are already k clusters, do nothing
- 3. If one of *i* or *j* is assigned, connect them and assign them to the same cluster
- 4. If both *i* and *j* are assigned, merge their clusters
- 5. If *i* and *j* are in the same cluster, do nothing

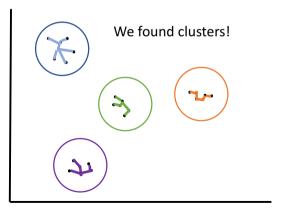
Idea: Construct a disconnected graph by "greedily" connecting the closest points first until all points have a cluster!



Begin with all points unassigned. Fill a priority queue Q with pairs of points (i, j) with values $dist(p_i, p_j)$

- 1. If neither of (i, j) are assigned and there are fewer than k clusters, connect them and put them in their own cluster
- 2. If neither of (i, j) are assigned and there are already k clusters, do nothing
- 3. If one of *i* or *j* is assigned, connect them and assign them to the same cluster
- 4. If both *i* and *j* are assigned, merge their clusters
- 5. If *i* and *j* are in the same cluster, do nothing

Idea: Construct a disconnected graph by "greedily" connecting the closest points first until all points have a cluster!

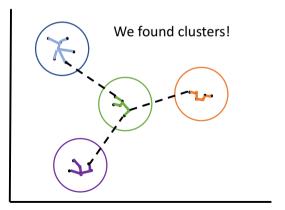


Does this algorithm or its output remind us of anything?

Begin with all points unassigned. Fill a priority queue Q with pairs of points (i, j) with values $dist(p_i, p_j)$

- If neither of (*i*, *j*) are assigned and there are fewer than *k* clusters, connect them and put them in their own cluster
- 2. If neither of (i, j) are assigned and there are already k clusters, do nothing
- 3. If one of *i* or *j* is assigned, connect them and assign them to the same cluster
- 4. If both *i* and *j* are assigned, merge their clusters
- 5. If *i* and *j* are in the same cluster, do nothing

Idea: Construct a disconnected graph by "greedily" connecting the closest points first until all points have a cluster!

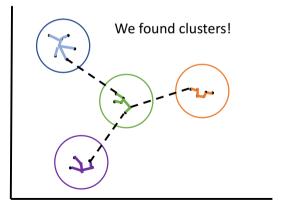


Does this algorithm or its output remind us of anything? We found a subgraph of a minimum spanning tree!

Begin with all points unassigned. Fill a priority queue Q with pairs of points (i, j) with values $dist(p_i, p_j)$

- If neither of (*i*, *j*) are assigned and there are fewer than *k* clusters, connect them and put them in their own cluster
- 2. If neither of (i, j) are assigned and there are already k clusters, do nothing
- 3. If one of *i* or *j* is assigned, connect them and assign them to the same cluster
- 4. If both *i* and *j* are assigned, merge their clusters
- 5. If *i* and *j* are in the same cluster, do nothing

We can modify Kruskal's algorithm for finding a minimum spanning tree



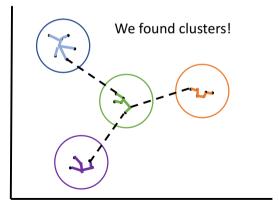
Kruskal's MST Algorithm

Start with $T = \emptyset$ For each edge (i, j) in ascending order of weight:

• If adding (*i*, *j*) would decrease the number of connected components in the graph, add (*i*, *j*) to *T*

We just need to stop the algorithm when we have k connected components, which are our clusters!

We can modify Kruskal's algorithm for finding a minimum spanning tree



Kruskal's MST Algorithm

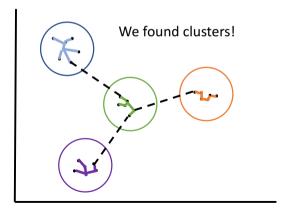
Start with $T = \emptyset$ For each edge (i, j) in ascending order of weight:

• If adding (*i*, *j*) would decrease the number of connected components in the graph, add (*i*, *j*) to *T*

We just need to stop the algorithm when we have k connected components, which are our clusters!

Equivalently: we could compute the whole MST using any algorithm, then remove the k - 1 most expensive edges!

Clustering @ Solve MST on wey 24d ouph-STX weight groph 3 Transform the output: Remove K-1 most expersive dye from TX We can modify Kruskal's algorithm for finding a minimum spanning tree



Kruskal's MST Algorithm

Start with $T = \emptyset$

For each edge (i, j) in ascending order of weight:

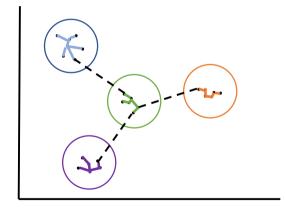
• If adding (*i*, *j*) would decrease the number of connected components in the graph, add (*i*, *j*) to *T*

We just need to stop the algorithm when we have k connected components, which are our clusters!

Equivalently: we could compute the whole MST using any algorithm, then remove the k-1 most expensive edges.

So we can reduce the problem of finding a maximum spacing clustering to finding an MST!

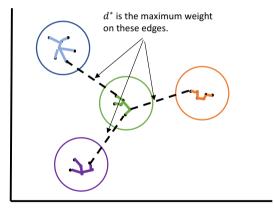
Claim: The components $C_1, C_2, \dots C_k$ formed by deleting the k - 1 most expensive edges of the minimum spanning tree T constitute a k-clustering of maximum spacing.



Claim: The components $C_1, C_2, \dots C_k$ formed by deleting the k - 1 most expensive edges of the minimum spanning tree T constitute a k-clustering of maximum spacing.

Let *C* denote the clustering found by the procedure above.

The spacing of C is the weight of the $(k - 1)^{st}$ most expensive edge in T. Denote this weight d^* .

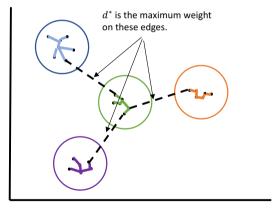


Claim: The components $C_1, C_2, \dots C_k$ formed by deleting the k - 1 most expensive edges of the minimum spanning tree T constitute a k-clustering of maximum spacing.

Let *C* denote the clustering found by the procedure above.

The spacing of C is the weight of the $(k - 1)^{st}$ most expensive edge in T. Denote this weight d^* .

Consider some other valid k-clustering C'. We need to show that the spacing of C' is at most d^* .



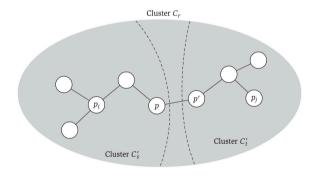
Claim: The components $C_1, C_2, \dots C_k$ formed by deleting the k - 1 most expensive edges of the minimum spanning tree T constitute a k-clustering of maximum spacing.

Let *C* denote the clustering found by the procedure above.

The spacing of C is the weight of the $(k - 1)^{st}$ most expensive edge in T. Denote this weight d^* .

Consider some other valid k-clustering C'. We need to show that the spacing of C' is at most d^* .

Since C and C' are not the same, one of our clusters C_r is not a subset of any of the k sets in C'. This means there must be points $p_i, p_j \in C_r$ that belong to difference clusters in C', for example $p_i \in C_s'$ and $p_j \in C_t'$.



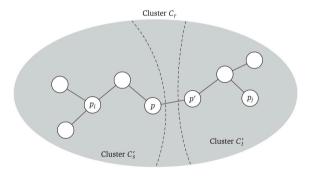
Claim: The components $C_1, C_2, \dots C_k$ formed by deleting the k - 1 most expensive edges of the minimum spanning tree T constitute a k-clustering of maximum spacing.

Let *C* denote the clustering found by the procedure above.

The spacing of C is the weight of the $(k - 1)^{st}$ most expensive edge in T. Denote this weight d^* .

Consider some other valid k-clustering C'. We need to show that the spacing of C' is at most d^* .

Since C and C' are not the same, one of our clusters C_r is not a subset of any of the k sets in C'. This means there must be points $p_i, p_j \in C_r$ that belong to difference clusters in C', for example $p_i \in C_s'$ and $p_j \in C_t'$.

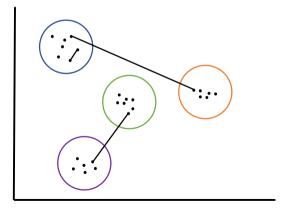


Since our MST algorithm included the edge from p to p', it must have had weight at most d^* .

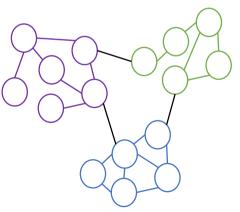
Since p and p' belong to different clusters in C', its spacing must be at most $d^*!$ Proof complete.

We will study two kinds of clustering

General clustering

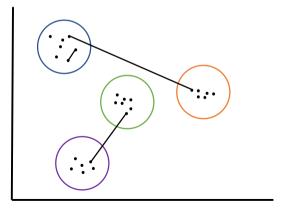


Clustering in graphs (also known as *community detection*)

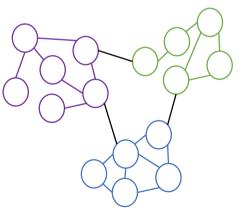


We will study two kinds of clustering

General clustering



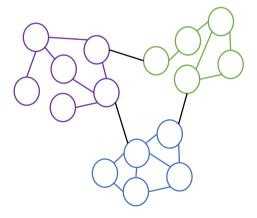
Clustering in graphs (also known as *community detection*)



Can we apply the same techniques for clustering in graphs?

Next Time: Clustering in Graphs

Clustering in graphs (also known as *community detection*)



Given a graph, we want to partition the nodes in to *clusters* or *communities* for some purpose

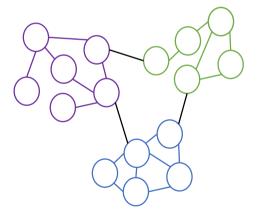
- Detecting literal communities in social networks
- Detecting functionally similar genes in networks of gene interactions
- Detecting functional units in brain networks
- Detecting suspicious actors in financial transaction networks

If we have a weighted graph, we can obviously apply the generic clustering approach where dist(i, j) is the weighted shortest path (or other distance function) between nodes i and j.

However, graphs already encode structure directly, so why not use it?

Next Time: Clustering in Graphs

Clustering in graphs (also known as *community detection*)



There are approximately one bajillion different ways to partition graphs for this task

• Subfield of data mining/network science called "community detection".

Some techniques rely purely on structural information (e.g. the connections in the graph).

• We will focus on techniques like these tomorrow

Other techniques incorporate *domain-specific* information when partitioning the nodes.

 These are too specific for this course, but generally combine the generic clustering technique with some version of structural partitioning

Wrap-up

Extra Credit Assignments are open

Suggester Reading:

Enidson

Charolis 17

Tomorrow: Clustering in graphs + other advanced topics

Thursday: Final Exam Review (form for questions sent out last night)

Final Exam: Released Thursday night, due Monday night