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Business

Midterm 2 Grades Posted
e Submit regrade requests via GradeScope ASAP

Extra Credit 1 & 2 both still available

e EC2 due tomorrow at 5PM
* EC1 due Sunday



Midterm 2

Grades were overall very good!

Median 63/70, mean 61/70

30 40



Final Exam

Review session/Q&A tomorrow during class

Exam released tomorrow night at 6PM and due Monday at midnight



Community Detection in Networks

Given a network structure, we want to partition the nodes into communities

Bayesian Dolphin Network Clustering

34 members of a karate club
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Girvan-Newman Approach

Community detection in early days relied on hierarchical clustering
* The same process we discussed yesterday, but keeping more data
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Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wj; of connections between vertex pairs.

Community structure in social and biological networks. PNAS, 2001.



Girvan-Newman Approach

Community detection in early days relied on hierarchical clustering
* The same process we discussed yesterday, but keeping more data

Our k-cluster algorithm just
cuts this clustering tree such
that we have k communities.
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Girvan-Newman Approach

Community detection in early days relied on hierarchical clustering
* The same process we discussed yesterday, but keeping more data

Our k-cluster algorithm just
cuts this clustering tree such
] that we have k communities.
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Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wj; of connections between vertex pairs.

The problem with this for networks is that it relies on the edge weights always being
meaningful distances, which may not be the case!




Girvan-Newman Approach

Community detection in early days relied on hierarchical clustering
* The same process we discussed yesterday, but keeping more data

Our k-cluster algorithm just
cuts this clustering tree such
] that we have k communities.
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Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wj; of connections between vertex pairs.

The problem with this for networks is that it relies on the edge weights always being

meaningful distances, which may not be the case!
* Their solution: Define edge betweenness centrality and use that as the weight




Girvan-Newman Approach

Starting with the complete graph, repeat until no edges remain:
1. Compute edge betweenness centrality for every edge
2. Remove the edge with the highest betweenness

Community structure in social and biological networks. PNAS, 2001.



Girvan-Newman Approach

Starting with the complete graph, repeat until no edges remain:
1. Compute edge betweenness centrality for every edge
2. Remove the edge with the highest betweenness

Computing edge betweenness over and
over again is expensive!

Assuming we run it once per m edges,
the running time is at least 0(m?n).

However, the authors claim that in

practice the algorithm can be sped up

by making selective updates (some

values will not change between

iterations) and stopping before all

edges are removed. Community structure in social and biological networks. PNAS, 2001.



Modularity

The Girvan-Newman algorithm is implicitly
optimizing towards a notion of “internal
connectedness”

Modularity is a measure of in-connections versus
out-connections given a partitioning of the nodes in a
graph into communities

Intuitively: How much more likely is it that a node in
community i connects to others in its community
rather than in some other community?

It is computed as:
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Fast unfolding of communities in large networks. J. Stat. Mech., 2008



Louvain Algorithm

Find a partition that maximizes modularity! How?

1. Assign every node to its own community
2. Repeat until no increase in modularity is

possible: 1

a) For every node, merge communities with the gﬁﬁrﬂiﬁ?y Acoregaton
neighbor that would maximally increase modularity .../
(do nothing if there is no way to increase for that
node)

3. Construct a new weighted graph G, where the __
vertices are the communities and weighted 2
links between them represent the sum of links Figure 1. Visualization of the steps of our algorithm. Each pass is made of

two phases: one where modularity is optimized by allowing only local changes

between commun |t|es of communities; one where the communities found are aggregated in order to
build a new network of communities. The passes are repeated iteratively until

4. Repeat 2-3 until no increase in modularity is o increase of modularity is possible.
possible

7 14

2nd pass 26
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24

Fast unfolding of communities in large networks. J. Stat. Mech., 2008



Louvain Algorithm

This is still an active area
of research!

From Louvain to Leiden: guaranteeing
well-connected communities

V. A. Traag &, L. Waltman & N. J. van Eck

Scientific Reports 9, Article number: 523 | Cite this article

15k Accesses | 55 Citations | 202 Altmetric \ Metrics

Abstract

Community detection is often used to understand the structure of large
and complex networks. One of the most popular algorithms for
uncovering community structure is the so-called Louvain algorithm.
We show that this algorithm has a major defect that largely went
unnoticed until now: the Louvain algorithm may yield arbitrarily badly
connected communities. In the worst case, communities may even be
disconnected, especially when running the algorithm iteratively. In our
experimental analysis, we observe that up to 25% of the communities
are badly connected and up to 16% are disconnected. To address this
problem, we introduce the Leiden algorithm. We prove that the Leiden
algorithm yields communities that are guaranteed to be connected. In
addition, we prove that, when the Leiden algorithm is applied
iteratively, it converges to a partition in which all subsets of all
communities are locally optimally assigned. Furthermore, by relying on
a fast local move approach, the Leiden algorithm runs faster than the
Louvain algorithm. We demonstrate the performance of the Leiden
algorithm for several benchmark and real-world networks. We find that
the Leiden algorithm is faster than the Louvain algorithm and uncovers

better partitions, in addition to providing explicit guarantees.

Researchers found last
year that the Louvain
algorithm can return
partitionings with
strange structure in
some cases and have
proposed an algorithm
they claim is better (the
Leiden algorithm).



Louvain Algorithm

This is still an active area
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Abstract

Community detection is often used to understand the structure of large
and complex networks. One of the most popular algorithms for
uncovering community structure is the so-called Louvain algorithm.
We show that this algorithm has a major defect that largely went
unnoticed until now: the Louvain algorithm may yield arbitrarily badly
connected communities. In the worst case, communities may even be
disconnected, especially when running the algorithm iteratively. In our
experimental analysis, we observe that up to 25% of the communities
are badly connected and up to 16% are disconnected. To address this
problem, we introduce the Leiden algorithm. We prove that the Leiden
algorithm yields communities that are guaranteed to be connected. In
addition, we prove that, when the Leiden algorithm is applied
iteratively, it converges to a partition in which all subsets of all
communities are locally optimally assigned. Furthermore, by relying on
a fast local move approach, the Leiden algorithm runs faster than the
Louvain algorithm. We demonstrate the performance of the Leiden
algorithm for several benchmark and real-world networks. We find that
the Leiden algorithm is faster than the Louvain algorithm and uncovers

better partitions, in addition to providing explicit guarantees.
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some cases and have
proposed an algorithm
they claim is better (the
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InfoMap: Information Theoretic Communities

Yet another way to define communities is based on information flow
between partitions of a network.

Describing a Path on a Network. To illustrate what coding has to do
with map-making, consider the following communication game.
Suppose that you and I both know the structure of a weighted,
directed network. We aim to choose a code that will allow us to
efficiently describe paths on the network that arise from a
random walk process in a language that reflects the underlying
structure of the network. How should we design our code?

Maps of random walks on complex networks
reveal community structure. PNAS, 2008.



InfoMap: Information Theoretic Communities

Yet another way to define communities is based on information flow
between partitions of a network.

A “random walk process” is what it
sounds like: Start a “walker” on a
random node, and let it choose
which neighbor to visit randomly
based on some probability
distribution.

The intuition behind
InfoMap is to give every
node a symbol, then
encode random walks
using our old friend the
Huffman Code!

Maps of random walks on complex networks
reveal community structure. PNAS, 2008.



InfoMap: Information Theoretic Communities

Idea: Treating each (partition, node)
pair as a symbol, find the partitioning
that minimizes the theoretical
description length of a (very long or
infinite) random walk through the
graph structure.

The description length is computed at
two levels: within a partition, and
across partitions.

The algorithm starts with all nodes in
their own partition, then greedily
merges partitions that will lead to
maximum lowering of the description
length.

111 0000 11 01 101 100 101 01 0001 0 110 011 00 11000 111 1011 10
111 000 10 111 000 111 10 011 10 000 111 10 111 10 0010 10 011 010
011 10 000 111 0001 0 111 010 100 011 00 111 00 011 00 111 00 111
1111111111111 111 01 101 01 0001 0 110 111 00 011 110 111 1011
10 111 000 10 000 111 0001 0 111 010 1010 010 1011 11000 10 011

Maps of random walks on complex networks
reveal community structure. PNAS, 2008.



Complexity



Complexity

Circuit Satisfiability: Is it possible to set the inputs of the n input switches
such that the output is True?
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Complexity

Circuit Satisfiability: Is it possible to set the inputs of the n input switches
such that the output is True?
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You are presented with a grand bargain: Solve the circuit satisfiability
problem and earn S1 trillion dollars, or lose everything.




Complexity

Circuit Satisfiability: Is it possible to set the inputs of the n input switches
such that the output is True?
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You are presented with a grand bargain: Solve the circuit satisfiability
problem and earn S1 trillion dollars, or lose everything.



Complexity

Circuit Satisfiability: Is it possible to set the inputs of the n input switches
such that the output is True?

There is no polynomial time

Xy @ —Ton algorithm for solving CircuitSat
n .
Should you take Z > and there are 2" possible
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inputs.
the deal? — P
2 R
’ AND Since you are mortal, as n gets
No! 56— @». _)_‘ arbitrarily large you will run out
' of time on Earth before you can

X5 >‘>O try every input!

You are presented with a grand bargain: Solve the circuit satisfiability
problem and earn S1 trillion dollars, or lose everything.




Some definitions

A decision problem is a problem whose output is a
simple Yes or No

e P is the set of decision problems that can be
solved in polynomial time

e e.g. there is an algorithm that finds a solution in time
0 (n°) for some constant ¢

* NP is the set of decision problems whose

solutions can be verified in polynomial time.
* Every problem in P isin NP because we can verify a

solution by running the polynomial time algorithm
and checking the output

( NP Problems \

P Problems

- /




NP-hard and NP-complete

* A problem II is NP-hard if it can be shown that if we had a polynomial

time solution to Il we would have a solution to any problem in NP
* Intuitively, if a problem is NP-hard it means it is at least as hard as any other
problem in NP
* Practically: To prove a problem IT is NP-hard, reduce a known NP-hard
problem to Il
* Your decision on the grand bargain would be made easier if you knew that
CircuitSat is NP-hard!

* A problem II is NP-complete if it is both in NP (solutions can be
verified in polynomial time) and is proven to be NP-hard



Sowhatif P = NP?

1. We would be able to accept the grand
bargain and emerge victorious with
our $1 trillion.

2. Problems that are currently
intractable to solve exactly efficiently
— in particular, automated
mathematical theorem proving —could
potentially be solved efficiently. Many
famous open problems in
mathematics could likely be solved
automatically if indeed P = NP.

3. Cryptography might just like, not work
anymore

4. We would have an answer to one of
the most interesting and
consequential problems in modern
science (and therefore the whole
history of Computer Science).

NP-Complete

Complexity

NP-Hard

P = NP
= NP-Complete




Sowhatif P = NP?

We would be able to accept the grand
bargain and emerge victorious with
our $1 trillion.

Problems that are currently
intractable to solve exactly efficiently
— in particular, automated

mathematical theorem proving —could

potentially be solved efficiently. Many
famous open problems in
mathematics could likely be solved
automatically if indeed P = NP.

Cryptography might just like, not work

anymore

We would have an answer to one of
the most interesting and
consequential problems in modern
science (and therefore the whole
history of Computer Science).

A
NP-Complete
£
P = NP

To learn more...

NP-Hard

P = NP
= NP-Complete

Read Erickson Chapter 12 and take a course on

Theory of Computation

(CS 3800)!



What we have covered in this course

Asymptotic Analysis

Divide and Conquer Algorithms
* Recursion/Backtracking
* Dynamic Programming

Graph Algorithms

Network Flow
e Reductions between algorithms

Greedy Algorithms
 Huffman Codes and entropy

Algorithms
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What we did not cover

There are many topics related to algorithms that we did not cover in this
class, including...

Fairness, privacy, and ethics in algorithms
Distributed/parallel algorithms
Randomized algorithms

Linear and convex optimization
Numerical algorithms

Algorithms for number theory

Machine learning algorithms

Algorithms for strategic agents
Algorithms for quantum computers
Naturally occurring algorithms

You can learn about these

topics in more advanced

courses in Khoury, online,

or at other institutions in
the future!

If any of them are
particularly interesting to
you and you want to learn
more, you can send me an
email and | will try to find
you a starting point!



Wrap-up

This is our last lecture ® but not our last meeting!
Tomorrow: Final Exam Review Session/Q&A

Final Exam: Released tomorrow night 6PM, due Monday midnight



