
Lecture	22:	Final	Exam	
Review	+	Q&A

Tim	LaRock
larock.t@northeastern.edu

bit.ly/cs3000syllabus



Business

EC1	due	Sunday

EC2	due	at	5PM

Final	exam	to	be	released	at	6PM	tonight	and	due	Monday	night	at	
midnight	Boston	time

Today	is	our	last	meeting	L



What	we	have	covered	in	this	course

Asymptotic	Analysis

Divide	and	Conquer	Algorithms
• Recursion/Backtracking
• Dynamic	Programming

Graph	Algorithms

Network	Flow
• Reductions	between	algorithms

Greedy	Algorithms
• Huffman	Codes	and	entropy



Pseudocode
• In	general:	there	should	be	enough	detail	that	someone	could	implement	the	algorithm	based	on	
your	pseudocode,	but	not	so	much	detail	that	it	is	difficult	to	follow
• This	is	subjective	and	problem	dependent!	Writing	good	pseudocode	is	an	art	more	than	a	science!

• Pseudocode	should	never	be	written	to	rely	on	the	features	of	any	specific	programming	language
• For	example:	You	should	not assume	that	there	is	a	len()	function	(as	in	python).	Instead,	as	we	have	

throughout	this	course,	assume	that	the	length	of	an	array	is	given,	e.g.	𝐴[1. . 𝑛].	
• If	you	are	using	a	list,	not	an	array,	then	you	need	to	intentionally	decide	whether	there	is	an	𝑂(1) len()	

function	or	if	you	need	to	traverse	the	list	to	find	its	length.	
• Usually	this	is	safe	to	do,	but	you	need	to	recognize	that	it	is	a	choice	that	depends	on	the	problem	you	are	solving!

• You	can	use	English	descriptions	where	they	make	things	clearer!
• “Let	𝑥+, 𝑥-, … , 𝑥/ be	integers	representing…”
• “for	each	neighbor	𝑣 of	𝑢”



Pseudocode

• When	in	doubt	on	the	final,	a	little	bit	too	much	detail	is	better	than	

an	underspecified	solution!

• Absolutely	must	be	typeset	in	LaTeX on	the	final,	no	exceptions.



Dynamic	Programming:	Strategery (HW2)



Question:	Does	greedy	find	the	max?

10 2 8

Greedy:	Always	choose	the	tile	with	maximum	value.	Assume	Alice	and	Bob	are	
both	playing	with	this	strategy.



Question:	Does	greedy	find	the	max?

10 2 8 Alice	=	10	+	2	– 8	=	4

Alice1

Greedy:	Always	choose	the	tile	with	maximum	value.	Assume	Alice	and	Bob	are	
both	playing	with	this	strategy.



Question:	Does	greedy	find	the	max?

10 2 8

Bob2

Alice	=	10	+	2	– 8	=	4

Alice1

Greedy:	Always	choose	the	tile	with	maximum	value.	Assume	Alice	and	Bob	are	
both	playing	with	this	strategy.



Question:	Does	greedy	find	the	max?

10 2 8

Bob2

Alice	=	10	+	2	– 8	=	4

Alice3

Alice1

Greedy:	Always	choose	the	tile	with	maximum	value.	Assume	Alice	and	Bob	are	
both	playing	with	this	strategy.

Seems	to	work	for	
this	example!



Question:	Does	greedy	find	the	max?

1 2 3

Alice1

Bob2

Alice3

Alice	=	5	+	3	+	1	– (2+4)	=	3

4 5

Bob4

Alice4

Alice	=	5+2+3	– (1+4)	=	5

1 2 3

Alice1

Bob2

Alice4

4 5

Bob2

Alice3

Greedy:	Always	choose	the	tile	with	maximum	value.	Assume	Alice	and	Bob	are	
both	playing	with	this	strategy.



Question:	Does	greedy	find	the	max?

1 2 3

Alice1

Bob2

Alice3

Alice	=	5	+	3	+	1	– (2+4)	=	3

4 5

Bob4

Alice4

Alice	=	5+2+3	– (1+4)	=	5

1 2 3

Alice1

Bob2

Alice4

4 5

Bob2

Alice3

Greedy:	Always	choose	the	tile	with	maximum	value.	Assume	Alice	and	Bob	are	
both	playing	with	this	strategy.



Question:	Does	greedy	find	the	max?

1 2 3

Alice1

Bob2

Alice3

Alice	=	5	+	3	+	1	– (2+4)	=	3

4 5

Bob4

Alice4

Alice	=	5+2+3	– (1+4)	=	5

1 2 3

Alice1

Bob3

Alice4

4 5

Bob2

Alice3

Greedy:	Always	choose	the	tile	with	maximum	value.	Assume	Alice	and	Bob	are	
both	playing	with	this	strategy.

This	is	not the	
maximum	score	
Alice	could	achieve!



Solution
We	need	to	write	a	recurrence	that	represents	the	maximum	score	Alice	could	achieve,	
assuming	both	players	are	playing	optimally.

We	will	compute	𝑂𝑝𝑡(𝑖, 𝑗),	which	represents	the	optimal	solution	when	the	leftmost	tile	
on	the	table	is	𝑖 and	the	rightmost	is	𝑗.

We	need	to	account	for	(1)	the	fact	that	her	total	score	is	determined	by	subtracting	
Bob’s	tiles,	as	well	as	(2)	the	base	case	when	there	is	only	1	tile	remaining.

For	an	arbitrary	𝑖 and	𝑗,		Alice’s	total	score	is	represented	by	picking	up	either	tile	𝑖 or	tile	
𝑗,	then	subtracting	the	optimal	score	on	the	new	set	of	tiles,	which	represents	Bob	
playing	optimally	(then	Alice	playing	optimally,	then	bob	playing	optimally,	and	so	on	
until	the	base	case).	

𝑂𝑝𝑡 𝑖, 𝑗 = 7
𝑎9

max	{𝑎9 − 𝑂𝑝𝑡 𝑖 + 1, 𝑗 , 	𝑎A−𝑂𝑝𝑡 𝑖, 𝑗 − 1 }

If	𝑖 = 𝑗



Solution

𝑂𝑝𝑡 𝑖, 𝑗 = 7
𝑎9

max	{𝑎9 − 𝑂𝑝𝑡 𝑖 + 1, 𝑗 , 	𝑎A−𝑂𝑝𝑡 𝑖, 𝑗 − 1 }

If	𝑖 = 𝑗



Clarification:	Top	down	Vs.	Bottom	up

In	algorithms:
• Top	down	is	memoization

• We	discussed	for	Fibonacci	numbers
• In	this	case,	your	solution	still	”looks	recursive”,	but	every	call	either	fills	an	entry	in	
the	table	or	uses	the	table	to	get	a	next	solution

• Bottom	up	is	also	called	“tabulation”	
• It	usually	corresponds	to	starting	at	the	base	case	and	iteratively	building	every	
subsequent	solution	from	there.

Observation:	A		tradeoff	between	the	two	is	that	tabulation	is	often	
conceptually	simpler	to	implement,	but	memoization is	easier	to	think	about	
if	you	already	have	a	full	recursive	solution.	

Key	point:	The	result	on	a	given	input	should	be	equivalent	for	our	purposes!



Memo(r)ization
𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
return 𝐹𝑖𝑏(𝑛 − 1) 	+ 	𝐹𝑖𝑏(𝑛 − 2)

• 𝐹𝑖𝑏(𝑛) is	very	slow	because	we	are	
recomputing the	same	values	over	and	over	
again!

• What	if	instead	we	save	each	value	we	compute	
so	that	we	can	access	it	in	constant	time?

• Keep	a	global	table	𝐹[𝑖] that	stores	results	and	
use	stored	results	where	possible

• How	is	the	table	filled?	And	what	implication	
does	this	have	for	the	runtime?

𝑀𝑒𝑚𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:
return 0

ElseIf 𝑛 = 1:
return 1

Else:
If 𝐹[𝑛]	is undefined:
F n = 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 1) 	+ 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 2)

return 𝐹[𝑛]



Tabulation
𝑀𝑒𝑚𝐹𝑖𝑏(𝑛):
If 𝑛 = 0:

return 0
ElseIf 𝑛 = 1:

return 1
Else:

If 𝐹[𝑛]	is undefined:
F n = 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 1) 	+ 𝑀𝑒𝑚𝐹𝑖𝑏(𝑛 − 2)

return 𝐹[𝑛]

𝐼𝑡𝑒𝑟𝐹𝑖𝑏 𝑛 :
𝐹 0 ← 	0
𝐹 1 ← 	1
for 𝑖 from 2	. . 𝑛

F i ← 𝐹[𝑖 − 1] + 𝐹[𝑖 − 2]	
return 𝐹[𝑛]

• The	execution	order	and	runtime	of	
𝑀𝑒𝑚𝐹𝑖𝑏(𝑛) implies	a	simpler	way	to	compute	
Fibonacci	numbers

• What	if	we	just	like….filled	𝐹 explicitly?
• This	is	tabulation!

• Now	the	execution	is	clearly	𝑂(𝑛)!



Betweenness Centrality

Betweenness	centrality	is	used	as	a	proxy	for	the	importance	of	a	node	in	facilitating	
connections	between	other	nodes.

For	node	𝑢,	betweenness is	measured	as	the	ratio	of	shortest	paths	between	all	other	pairs	
of	nodes	(𝑠, 𝑡)	that	𝑢 lies	on.	Formally:

𝐵 𝑢 = S
𝜎UV(𝑢)
𝜎UV

�

UXVXY
Where	𝜎UV is	the	number	of	shortest	paths	between	nodes	𝑠 and	𝑡 and	𝜎UV(𝑢) is	the	
number	of	those	shortest	paths	that	include	𝑢.

u c

ba

e



Betweenness Centrality

𝐵 𝑢 = S
𝜎UV(𝑢)
𝜎UV

�

UXVXY

Where	𝜎UV is	the	number	of	shortest	paths	
between	nodes	𝑠 and	𝑡 and	𝜎UV(𝑢) is	the	
number	of	those	shortest	paths	that	include	𝑢.

u c

ba

e

Steps:	
1. Write	down	all	the	pairs	of	nodes	that	are	not	𝑢
2. Optional:	Eliminate	any	pairs	that	are	directly	

connected,	since	they	cannot	possibly	have	
paths	containing	𝑢 (numerator	=	0)

3. Compute	all	shortest	paths	between	the	
remaining	pairs	of	nodes

4. Use	the	formula	to	compute	centrality



Huffman	Codes

Huffman’s	Algorithm:	Choose	the	two	least	frequent	symbols	and	
recurse.

Symbol a b c d e f g

Frequency 0.2 0.18 0.17 0.15 0.11 0.10 0.09



Reduction

• Definition:	a	reduction is	an	efficient	algorithm	
that	solves	problem	A using	calls	to	function							
that	solves	problem	B.



Mechanics	of	Reductions

• What	exactly	is	a	problem?
• A	set	of	legal	inputs	𝑿

• Ex:	An	array	of	numbers	𝐴[1. . 𝑛]

• A	set	𝑨(𝒙) of	legal	outputs	for	each	𝒙 ∈ 𝑿
• Ex:	The	array	𝐴 in	sorted	order

• Example:	integer	maximum	flow

• Input:	𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐b ) where	𝑐b is	an	integer	for	
every	𝑒 ∈ 𝐸

• Output:	A	maximum	flow	{𝑓 𝑒 } for	𝐺 where	𝑓(𝑒) is	an	
integer	for	every	𝑒 ∈ 𝐸 such	that	0 ≤ 𝑓 𝑒 ≤ 𝑐b



Mechanics	of	Reductions

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

In	the	simplest	case,	we	just	call	SolveA a	single	time.	In	fact	
we	may	use	SolveA as	a	subroutine	to	a	more	complex	

reduction.



When	is	a	Reduction	Correct?

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

Then	for	every	valid	input	𝑥,	if	𝑣 is	a	
valid	output	in	𝐴 𝑢 ,	then	𝑦 is	a	valid	
output	in	𝐵(𝑥).

Assume	that	for	valid	input	𝑢,	SolveA
returns	a	valid	output	𝑣 in	𝐴(𝑢).



Example:	Minimum	Cut

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

A	=	MaxFlow
B	=	MinCut

Input	𝑥 for	B:	𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐b )

Input	𝑢 for	A:	𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐b )

Output	𝑣 ∈ 𝐴(𝑢):	𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐b )

Output	𝑦 ∈ 𝐵(𝑥):	𝐺 = (𝑉, 𝐸, 𝑠, 𝑡, 𝑐b )

1. Take	𝑓,	compute	the	residual	graph	𝐺f
2. Find	the	nodes	reachable	from	𝑠 in	𝐺f
3. Output	these	nodes



Example:	Median

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

Input	𝑥 for	B:	Array	of	length	𝑛,	𝐴 1. . 𝑛

Input	𝑢 for	A:	Same	array

Output	𝑣 ∈ 𝐴(𝑢):	Sorted	version	of	𝐴[1. . 𝑛]

Output	y ∈ 𝐵(𝑥):	𝐴[	 /
-
	]

A	=	MergeSort
B	=	Median



Bipartite	Matching

• Input: bipartite	graph	𝐺	 = 	 (𝑉, 𝐸)	with	𝑉	 = 𝐿 ∪ 𝑅

Models	any	problem	where	one	type	
of	object	is	assigned	to	another	type:
• doctors	to	hospitals
• jobs	to	processors
• advertisements	to	websites

𝐿 𝑅



Bipartite	Matching

• Input: bipartite	graph	𝐺	 = 	 (𝑉, 𝐸)	with	𝑉	 = 𝐿 ∪ 𝑅
• Output: a	maximum	cardinality	matching
• A	matching𝑀 ⊆ 𝐸 is	a	set	of	edges	such	that	every	
node	𝑣 is	an	endpoint	of	at	most	one	edge	in	𝑀

Models	any	problem	where	one	type	
of	object	is	assigned	to	another	type:
• doctors	to	hospitals
• jobs	to	processors
• advertisements	to	websites

𝐿 𝑅



Bipartite	Matching

• Input: bipartite	graph	𝐺	 = 	 (𝑉, 𝐸)	with	𝑉	 = 𝐿 ∪ 𝑅
• Output: a	maximum	cardinality	matching
• A	matching𝑀 ⊆ 𝐸 is	a	set	of	edges	such	that	every	
node	𝑣 is	an	endpoint	of	at	most	one	edge	in	𝑀
• Cardinality	=	 𝑀

Models	any	problem	where	one	type	
of	object	is	assigned	to	another	type:
• doctors	to	hospitals
• jobs	to	processors
• advertisements	to	websites

𝐿 𝑅



Bipartite	Matching

• There	is	a	reduction	that	uses	integer	maximum	s-t	
flow to	solve	maximum	bipartite	matching.
• Problem	B:	maximum	bipartite	matching	(MBM)
• Problem	A:	integer	maximum	s-t	flow

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A



Bipartite	Matching

• There	is	a	reduction	that	uses	integer	maximum	s-t	
flow to	solve	maximum	bipartite	matching.
• Problem	B:	maximum	bipartite	matching	(MBM)
• Problem	A:	integer	maximum	s-t	flow

SolveA
Output	y	in	B(x)	
for	Problem	B

Input	x	for	
Problem	B

Input	u	for	
Problem	A

Output	v	in	A(u)	
for	Problem	A

1 2

3



Step	1:	Transform	the	Input

Input	G	for	
MCBM

Input	G’	for	
MAXFLOW

𝐿 𝑅



Step	1:	Transform	the	Input

Input	G	for	
MCBM

Input	G’	for	
MAXFLOW

𝐿 𝑅 𝐿 𝑅

Set	all	edge	capacities	to	𝑐 𝑒 = 1



Step	2:	Receive	the	Output

SolveA

Input	G’	for	
MAXFLOW

Output	f	for	
MAXFLOW

Red arrow	means	f(e)=1
Black	means f(e)	=	0



Step	2:	Receive	the	Output

SolveA

Input	G’	for	
MAXFLOW

Output	f	for	
MAXFLOW

Red arrow	means	f(e)=1
Black	means f(e)	=	0

The	matching	will	be	all	
of	the	edges	from	𝐿 to	
𝑅 with	nonzero	flow!



Step	3:	Transform	the	Output

Output	M	for	
MCBM

Output	f	for	
MAXFLOW



Reduction	Recap

• Step	1:	Transform	the	Input
• Given	G	=	(L,R,E),	produce	G’	=	(V,E,{c(e)},s,t)	by...

• ...	orienting edges e	from L	to R
• ...	adding a	node	s with edges from s to every node	in	L
• ...	adding a	node	t with edges from every not in	R to t
• ...	seting	all capacities to 1

• Step	2:	Receive	the	Output
• Find	an	integer	maximum	s-t	flow	f	in		G’

• Step	3:	Transform	the	Output
• Given	an	integer	s-t	flow	f(e)…

• Let	M	be	the	set	of	edges	e	going	from	L	to	R	that	have	f(e)=1



Correctness

• Need	to	show:
• (1)	This algorithm returns a	matching
• (2)	This	matching	is	a	maximum	cardinality	matching



Correctness

• This	algorithm	returns	a	matching

Since	the	capacity	on	every	edge	is	1,	by	conservation	of	flow	we	have:
• For	any	node	in	𝐿,	exactly	one	outgoing	edge	can	have	flow
• For	any	node	in	𝑅,	exactly	one	incoming	edge	can	have	flow



Correctness

• Claim:	G	has	a	matching	of	cardinality	at	least	k	if	
and	only	if	G’	has	an	s-t	flow	of	value	at	least	k



Correctness

• Claim:	G	has	a	matching	of	cardinality	at	least	k	if	
and	only	if	G’	has	an	s-t	flow	of	value	at	least	k

A	matching	of	size	𝑘 immediately	
implies	a	valid	flow	of	value	𝑘



Correctness

• Claim:	G	has	a	matching	of	cardinality	at	least	k	if	
and	only	if	G’	has	an	s-t	flow	of	value	at	least	k

A	flow	of	value	𝑘 must	have	𝑘 edges	
carrying	flow	from	𝐿 to	𝑅



Correctness

• Claim:	G	has	a	matching	of	cardinality	at	least	k	if	
and	only	if	G’	has	an	s-t	flow	of	value	at	least	k

A	flow	of	value	𝑘 must	have	𝑘 edges	
carrying	flow	from	𝐿 to	𝑅

A	matching	of	size	𝑘 immediately	
implies	a	valid	flow	of	value	𝑘

When	𝑘 is	the	maximum	cardinality	matching,	there	must	be	a	flow,	and	vice	versa!



Summary

• Can	solve	max	bipartite	matching	in	time	O(nm)	
using	Ford-Fulkerson
• Improvement	for	maximum	flow	gives	improvement	
for	maximum	bipartite	matching

Solving	maximum	integer	s-t	flow	in	a	graph	with	
n+2	nodes	and	m+n edges	and	c(e)	=	1	in	time	T

Solving	maximum	bipartite	matching	in	a	graph	
with	n	nodes	and	m	edges	in	time	T	+	O(m+n)



Greedy	Algorithm	Proofs

Inductive	Exchange	Arguments
• Assume	you	have	some	other	valid	solution,	then	show	that	you	can	iteratively	
transform	that	solution	in	to	the	greedy	solution	without	losing	optimality,	e.g.	that	
the	greedy	solution	is	at	least	as	good	as	the	other	solution
• Kind	of	like	a	proof	by	contradiction,	except	you	are	not	trying	to	prove	that	the	greedy	
solution	is	the	only	optimal	solution	(because	it	might	not	be!),	but	rather	that	any	other	
optimal	solution	is	only	as	good	as	the	Greedy	one	(they	have	the	same	value,	or	greedy	is	
better)

Greedy	Stays	Ahead
• Show	that	every	choice	that	greedy	makes	is	at	least	as	good	as	the	choice	that	any	
optimal	solution	would	make

• We	did	not	do	a	very	clear	example	of	this	in	class	- I	will	not	ask	about	it	on	the	final



Any	more	questions?



That’s	a	wrap!
• Best	of	luck	on	the	final,	you	will	do	great!
• As	usual,	ask	all	questions	privately	on	Piazza
• Make	sure	you	are	sleeping	and	eating	– your	health	is	always	more	
important	than	my	final	exam!

• PLEASE:	Fill	out	the	course	evaluation	if	you	have	not	already,	whether	you	
have	good	or	bad	things	to	say,	or	both!
• The	deadline	may	be	very	soon,	please	please	check	and	fill	it	out	
beforehand!

• I	want	to	hear	all	of	your	honest,	anonymous	feedback,	but I	don’t	get	to	
see	the	results	if	not	enough	people	fill	out	the	evaluation!	

• Your	feedback	may	help	improve	courses	taught	online	in	the	very	near	
future

• You	have	my	email	address,	I	would	be	glad	to	hear	from	you	about	anything!


